INTERNATIONAL JOINT CONFERENCES ON
THEORY AND PRACTICE OF SOFTWARE

/“ETAPS

ETAPS Poster Book

Collection of posters presented at ETAPS 2025
Hamilton, May 3-8, 2025

FASE 2025 Posters

ByteBack: Deductive Verification

at the Level of JVM Bytecode

Marco Paganoni

Software Institute, USI Lugano, Switzerland

Deductive Verification

ORequire(forall j :

OEnsure(return > 0)

public int onesMinusTwos(int []
int r = 0;

for (int i = 0;

invariant(r > 0)

switch (xs[i]) {
case 1. r += 1; break;
case 2: r —= 1;
b
¥
return r;

!

Verifier

PN

int o xs[j] # 2)

xs) {

i < xs.length; ++i) {

v

ByteBack’s Architecture

source code

Example. java

|

compiler

javac, scalagc, ...

BBLib
bblib. jar

Carlo A. Furia

Supported Java Features

——— bytecode

example. jar

Soot

Scene ——

transform

mmmmeme g 2ttaching

Java Support
Feature Version KeY OpenJML ByteBack
Generic classes 5 ! v v
Enhanced for loop 5 v v v
Variable arguments 5 v X v
Generic type inference 7 X x v
Try-with-resources block 7 x b v
Multi-catch block 7 v X v
Default methods 8 v v v
Local type inference 10 x b v
switch expressions 12 X x v
yieldin switch expressions 13 x x v
instanceof pattern matching 14 P X v
=m—
1 ReadInto.bpl
propagation l
T Boogie

Vimp

il code
|

ByteBack

https://github.com/atom-sw/byteback

BBlib: Specification in ByteBack

ORequire("no_twos") // @require(forall

joooint e xs[j] # 2)

OEnsure("nonnegative") // @ensure(return > 0)

public int onesMinusTwos(int... xs) {

var r = 0;

for (var x : xs) {
invariant(gte(r,
r += switch (x) {
case 1 -> 1;
case 2 -> -1;
default -> 0;
b

}

return r;

}

0));

// @invariant(r > 0)

oPredicate public boolean no_twos(int[] xs)

{ int j = Binding.integer();

oPredicate public boolean nonnegative(int[] xs,

{ return gte(r, 0); }

return forall(j,

neq(xs[jl, 2)); }

int r)

Experiments with ByteBack

120 Verified Programs

Language Count Size (LOC)

Java 8 58 8171

Java 17 23 6489

Scala 2.3 21 2221

Kotlin 1.8 18 2303

Benchmarks
Size (LOC) Time (s)

Source Boogie Encoding Verification
Total 1984 1031874 66.3 104.7
Average 159 8598 552.7 872.5

ITEX TikZposter

Holly Hendry, Ana Cavalcanti,

Cade McCall, Mark Chattington
holly.hendry@york.ac.uk

ROBOSTAR

Human-Robot Interaction in the Design and Verification of Robotic Systems

Problem Space Approach

Modelling and verification of robotic systems lessens the risk of a The steps of our design and verification approach:

critical failure
Desirable properties of a robotic system may depend on assumptions RoboScene _ Do
about the behaviour of humans A 'mecrg,cjz?,ﬂisﬁ?;p 10 >Yes
Verification of properties of such robotic systems requires a model of
expected human behaviour
Existing techniques for this modelling:

o need expert knowledge

o don't cover the whole system: human, software, hardware, D. Yes

scenario
Successful
o don’t support formal verification
Any approach should facilitate cross-discipline communication, : 5 . N ow What'?
L 4

Are B. Specify
action timings Properties
present? in CSP

the checks
pass?

Consult
Experts

without the loss of precision

Testing the system complies with the property we have
defined results in one of two outcomes:

User Needs Analysis

Pass
Conducting (n=14) industry interviews on HRI design approaches identified: e Automatic generation of artefacts: simulation, tests, proof of properties
* 26 processes ¢ 14 standards No common approach or * Production of rigorous evidence of system properties, useful in safety cases
* 20 tools ® 21 human traits standard Fail
e Indication of an issue within one of the models, whether
that be an expectation on the software, hardware,
1. Robotic System or human , ,
A e Can be used to inform the design of the
For any robotic system, to perform Fail system throggh h|ghl|ght'|ng.fa|lure' cases
P e Provide communication points
formal verification, we need to: C
Model the soft between software, hardware and
L]
Model he ZO O\lNare human factors engineers
* Model the hardware !
Pilot Handheld Drone
N D ‘ ‘ The Pilot decides if the
GetDroneBatteryStatus
We demonstrate here part of Gotpatenysiaus drone battery is ok within ~ Pass
OutputBatteryStatus!status
our search-and-rescue (SAR) i 5 seconds of asking for D

example where a Pilot T
monitors Drone flight satenorestatusor
through a Handheld device

the battery status

' Handheld ‘ ‘ Drone ‘
RunningE: I t d_priority(((((Pilot [| diff(inter(A_Pilot,A_Handheld),gets) []
El Pilot, landhe ,gets; ne {
Iva it

r \d)[\
terminate,pa

4. Property

2. Human
Interaction

Proving properties about a system allows us
to test the correctness of its design. These

properties could be time dependent, such as
the one defined here, or flow dependent like:

No system is currently fully autonomous, so, to
model the system, we need to model any
expected human interaction.

: After the Pilot requests the battery status, no
3. Behind the Scenes ; ; i
. . less than 20 seconds passes before successful
Our notation, RoboScene: o) .
. Verification through formal methods, and with an completion of the request.
e Applicable to any use case))
o Fgtioyes o capine eann ek automatically generated model of the human, requires:
. . * Creation of a metamodel to formalise the structure of Our approach enables you to:
e Understandable for various stakeholders in RoboS « Prove properties of the system
. . oboScene
the robotics development lifecycle i i
. p y . ¢ Definition of formal, mathematical, semantics for dependent on human interaction
e Formal semantics: timed, process algebraic R0boS « Mathematically prove these properties
oboScene

¢ Receive counterexamples in the case of
property failures (FDR)

¢ Development of a tool to automatically translate from

The Pilot requests the battery status of the b) X cal)
drone from the Handheld. The Handheld returns Ro oSce.ne info a mathematical notation (CSF)
e Connection of the human, software and hardware

it to the Pilot who then, after the passage of non- Properties of the SAR example are derived

deterministic time, decides if the status is ok. models from human factors models

UNIVERSITY

N
% Royal Academy %
of Engineering

Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Learning

Programs to Graph Execution

Raffi Khatchadourian!2

THECITY
UNVERSITY
NEW YORK

ICUNY Hunter College, USA (ponder@hunter.cuny.edu)

Introduction

Tatiana Castro Vélez2

Architecture & Dependencies

Mehdi Bagherzadeh3

2CUNY Graduate Center, USA

Nan Jia? Anita Rajal?

Modernizing Ariadne: New Enhancements

30akland University, USA

m As Deep Learning (DL) datasets grow,
efficiency becomes essential to support
responsiveness [16].

m Traditionally, DL frameworks embraced
deferred execution-style DL code for fast
execution.

m Hybrid approaches [2, 8, 13] execute
imperative DL programs quickly.

Hybridize Functions.

Figure: Screenshot of the HYBRIDIZE FUNCTIONS refactoring
preview wizard.

In TensorFlow [1], AutoGraph [13] can
enhance run-time performance by decorating
(annotating) appropriate Python function(s)
with @tf.function (Fig. 1).

Problems with Hybrid Approaches

m Require non-trivial metadata [12].

m Exhibit limitations and known issues with
native program constructs [9].

m Are difficult to use correctly and efficiently
(e.g., avoiding side-effects) [4].

m Developers manually specifying which
functions are converted.

Insight

Although imperative DL code typically
executes sequentially, hybridization resembles
parallelizing traditional sequential code.

Automated Tool

We design and implement a fully automated,
open-source refactoring tool named
HYBRIDIZE FUNCTIONS [11] that transforms
otherwise eagerly-executed imperative
(Python) DL code for enhanced performance.

Contributions

m Refactoring approach for automatically
converting imperative DL code to graphs.

m Novel tensor analysis for imperative DL.

m Fully automated, open-source tool
implemented as a PyDev [15] Eclipse [7]
IDE plug-in that integrates static analyses
from WALA [14] and Ariadne [6].

Hybridize Functions
Refactoring

Tensor shape and
type inference

Ariadne

Code
transformation,
Refactoring preview

PyDev

Eclipse Jython 3

Python parsing

Figure: Overall architecture.

Eclipse is leveraged for its existing, well
documented and integrated refactoring
framework and test engine [3], including
transformation APIs (e.g., ASTRewrite),
refactoring preview pane (Fig. 1),
precondition checking (e.g.,
Refactoring.
checkInitialConditions(),
Refactoring.
checkFinalPreconditions()), and
refactoring testing (e.g.,
RefactoringTest).

m PyDev used for efficient program entity
indexing, extensive refactoring support [3],
and that it is completely open-source for
all Python development.

WALA is used for static analyses, such as
ModRef, for which we built our side-effect
analysis upon.

Ariadne, which depends on WALA, is used
for its Python and tensor analysis,
including type inference and (TensorFlow)
library modeling.

Challenges Addressed

m Reworked much of the existing Java (JDT)

refactoring tooling to work with Python.
m Integrated Ariadne with PyDev due to its

excellent and long-lived refactoring support

for Python, including refactoring preview
pane, element GUI selection, and
refactoring undo history.

m Augmented Ariadne to analyze imperative
Deep Learning (Python) code by vastly
expanding the XML summaries to support
a wide variety of popular TensorFlow 2
APIs.

m Added support for Python constructs
commonly used in modern imperative DL
programs.

m Correlated varying intermediate
representations (IRs) with the original
Python source code.

m Python module packages.

m Wild card imports.

m Intra-package references (relative imports;
from .. import X).

m Package initialization scripts.

m Automatic unit test entry points discovery.

m Non-scalar tensor dataset [10] iteration.

m Modeling of additional libraries.

m Static and class methods analysis.

m Analysis of custom decorators.

m Callable object (functor) analysis (used in
Keras).

Evaluation Summary

m We applied our approach to 19 open-source
Python imperative DL programs of varying
size and domain, with thousands of source
lines of code ranging from 0.12 to 36.72.

m Our tool considered 766 Python functions,
automatically refactoring 42.56% despite
being highly conservative.

m During a run-time performance evaluation,
we measured an average relative model
training speedup of 2.16 (memory
consumption measurement pending).

m Differences in model accuracy and loss
before and after refactoring were negligible.

Conclusion

m Open-source, automated refactoring PyDev
Eclipse plug-in, HYBRIDIZE FUNCTIONS,
assists developers with writing optimal
imperative DL Python code.

m Integrates an Eclipse refactoring with
WALA Ariadne Python static analyses.

Future Work

m Explore incorporating advanced
container-based analyses.
m Automatically split functions.

References

1. Abadi, M. et al.: TensorFlow: A System for Large-Scale Machine Learning. In: OSDI (2016)

Apache, Hybridize. Apsche MXNes documentation. (2021). ntps: /st apacts
blocks/hybridize.h site

3. Baumer, D. et al. \megra(u ¢ refactoring support into a Java development tool
4. Castro Velez, T. et al: Challenges in Mlgvatmg Impevat\ve Deep Leamlng ongvams £ Graph Execution: An
Empirical Study. In: MSR. MSR '22. ACM (2022). http £/10.11 18423528

Chollt, - Deep Learning with Python. Manning (2020
Dolby, J. et al.: Ariadne. Analysis for Machine Learmng Pr

5.
6
7. Eclipse Foundation, Eclipse IDE. (2024). htt
8. Facebook Inc., PyTorch. TorchScript.
9
1

Google LLC, Better performance with tf function

0. Goog\e LLC ti data.Dataset. TensorFlow. V
ap

11 Hyb' dz&Funct jons-Refacto

12. Jeon e, E. et al: Speculative Symbolvc Grah Execution of Imperative Deep Leammg Programs. 5IG
Oper. Syst. Rev. 53(1), 26-33 (2019). http
13. Moldovan, D. et Autonaph Imperative-style Coding with Graph-based Performance. (2019). ariv
0 cs.PL]
14. TJ Watson Librares for Analysis. (2024). st github . con/wala/VALA

al-date)12-04-05T1¢ 03Z.

15. Zadrozny, F.: PyDev. (2023). h ed on 05/31/202
16. Zhou, W. et al; HARP: Holitic Ana\ysvs for Refacmnng Python Based Ana\yucs Programs. In: [CS

Acknowledgments This material is supported in part
by the National Science Foundation under awards CCF
2200343, CNS 2213763, and CCF 2343750.

International Conference on Fundamental Approaches to Software Engineering, May 3-8, 2025, Hamilton, Canada

SYMBOLIC STATE PARTITIONING FOR REINFORCEMENT LEARNING

Mohsen Ghaffarit © *, Mahsa Varshosaz! -, Einar Broch Johnsen?

L IT-University of Copenhagen, Copenhagen, Denmark
2 Univesity of Oslo, Oslo, Norway

, Andrzej Wasowski!

Talk: FASE, Tuesday, 11:00|

Full Paper

Problem: How to partition the state space for training an agent efficiently using Tabular Reinforcement Learning?

10

0 2 4 6 8 10 12 14
Position

State of the art: Tile coding

Contribution of this paper: SymPar

o, BREN
0 2 4

adaptive to the structure of the state space.

{The state-of-the-art partitioning methods are no

““‘"l i:" .W&c :‘ '.‘.' ;: :
W ncs Cohnl ol

y f.\!', 5

PRI RAR AR
Ay Ry
L. N K “o B\
' B T c‘!;":‘;‘:ﬁ o ‘
b "325 '3* 4
LN ‘:;‘;5(}‘Z .)

! AN e
A :‘).fﬂ k;'& - S 7% ? <
‘ ',;‘fﬁ.{: e ‘.‘*ﬁi@b&&"ﬁﬁ{b (
6 8 10

=—vs

Qo s

o LW
N

7 f»"‘ ' 73

1

= 12 14

t Capturing nonlinear dependencies between state
components, and finding narrow parts.

SymPar

*The environment is modeled as a com-
puter program that implements a single-
step transition function, producing the
next state and the corresponding reward,

*For each concrete action, the environ-
ment simulator is symbolically executed
to generate a set of partitions over the

output,

*Symbolic Execution extends normal ex-
ecution by running the operators of a lan-
guage using symbolic variables and pro-
ducing symbolic formulas (PC) as output,

*Symbolic execution computes semantic
based partition.

state space. SymPar then computes the |Simulator — Symbolic |:>
intersection of these partitions as its final Code Executor

Experiments Results

How does granularity of partition affect learning performance?

Increasing the search depth of the symbolic executor leads to finer-
grained partitions produced by SymPar. This higher granularity en- —

L
ot
| ——
| ——
| ——
| —]
| ——
|
(an)
ot
Reward of =*

hances learning performance, as reflected in improved accumulated 2
rewards. by .
e e et
2 4 6 8 10
k
How does SymPar scale with state space sizes? IS IS IS IS IS |S]|
The number of partitions generated by Sym-
Par remains constant as the state space grows, . 10x10 33 6464 73 1010 51
. o . Simple Wumpus L.
demonstrating scalability with respect to state " 1024102 33 d 102x102 73 Navigation 102x102 51
i aze or
Space size. 103x103 33 103103 73 103103 51
UNIVERSITY
|/} OFOSLO IT UNIVERSITY OF COPENHAGEN

FoSSaCS 2025 Posters

Fair Quantitative Games &

Ashwani Anand, Satya Prakash Nayak, Ritam Raha, Irmak Sag§lam, and Anne-Kathrin Schmuck

System Environment

O (Player 1) D (Player 2)
Fairness assumptions eliminate unrealistic scenarios. -
Fairness: Whenever the source node of a dashed edge ~_

is taken infinitely often, the dashed edge is also taken

infinitely often. 0 blocks

Qualitative

[1,2]

Contributions
Determined? By i) ; Reduction
(Pseudopolynomial)
1-fair MP Yes o(m*mw) To MP on 6n nodes and max absolute weight
2-fair MP Yes o(m*mw) To MP on 6n nodes and max absolute weight
1-fair Energy Yes o(n*mw) To Energy on 8n nodes and max absolute weight
Player 1 winning region reduces to that of an energy on the same
2-fair Energy No om3mw) graph, Player 2 winning region reduces to that of 2-fair MP game
on the same graph

Gadgets for Reducing Fair Games to Standard games

For each fair node v in
the 1-fair MP game

O
/It

replace v with the following v-gadget

escape branch for Player 1

fairness-forced escape branch for Player 2
(the escape branch)

(the fair branch) y
-n?w -1

wW+1

D
I

= simulation

branch

E()

[1] Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A., Soudjani, S.: Fast symbolic

algorithms for omega-regular games under strong transition fairness. TACAS'22
[2] Hausmann, D., Piterman, N., Saglam, I., Schmuck, A.: Fair gmega-regular games. FoSSaCS24

Can we guarantee the robot will put
a block at the mark, and remove it,
infinitely often?

Safety, Parity, Rabin...

Can be solved in same time
complexity as the original game

+1 -1
Phgiai 7N\ s7 TN
~— ~__7 ~
1 block 0 blocks 0 0 1block

Can we guarantee the robot will put a
block at the mark, and remove it, infinitely
often,

with h ry runnin
for some initial value of the bat!ery"

Quantitative
Energy, Mean-payoff

Fairness on system can be solved in
super-exponential time using current
approaches, whereas there is no
known approach for fairness on
environment.

Fairness in Quantitative Games

A play p is fair iff for every node v € inf (p) that has fair (dashed) outgoing edges
Ef(w) =0 Ef(v) S inf(p).

1-Fair Games: Player 1 nodes have fair outgoing edges.

2-Fair Games: Player 2 nodes have fair outgoing edges.

1-Fair Energy

Does there exist an initial credit ¢ and a
strategy o such that, total energy level along
every g-play stays non-negative AND the play
is fair?

1-Fair Mean Payoff

Does there exist a strategy o such that,

long run average payoff of every a-play
is non-negative AND the play is fair?

2-Fair Mean Payoff 2-Fair Energy

Does there exist an initial credit ¢ and a
strategy o such that, along a
play stays non-negative OR the play is NOT
fair?

Does there exist a strategy o such that,

long run average payoff of every a-play
is non-negative OR the play is NOT fair?

2-fair energy games are not
determined

A node is won by Player 1if there
exists a Player 1 strategy o and a credit
¢ s.t. every o — play is won by Player 1

for credit c.

A node is won by Player 2 if there
exists a Player 2 strategy T s.t. every
1t — play’s total payoff goes below —c
for every credit c.

MAX PLANCK INSTITUTE
FOR SOFTWARE SYSTEMS

TACAS 2025 Posters

Fixed Point Certificates for Reachability and

Expected Rewards in MDPs

Krishnendu Chatterjee, Maximilian Weininger, Tim Quatmann, Tobias Winkler, Maximilian Schaffeler, and Daniel Zilken

What even are Certificates?

MDP I\/IodeIWC/hecker -
Pro+ert Implementation Errors/ c 4f—
pery Floating Point Rounding ertificate

Formally verified certificate checker
N\
W

e
t’jJ

Easy-to-check proofs of the verification results!

MDPs (Markov decision processes)

@

. Target States

The Model for Systems
with Nondeterminism:
—> VS —-3
and Probabilities:

1 1 1
3, 3, 3, 1
S+ +5=—

Let’s Play! - The Reachability Game

(2) (1)
pmin _ pmin — ~o . -------------
Hints
-Consider opt = min and
(/ opt = max separately
) -Apply D°P* to each state
min max —
3 >0 b o0 until you reach a fixed point
IP)IIlaX > 0 Drnax < 00 - i}
if s €=
opt min 7(s’) ow.
a€Act(s) s’€Post(s,a)
pmax _ () pmin o (1) Compute the Distance Operator (") for each state
(2) Apply the following Lemma:
DP' =00 = PP =)
Experimental Evaluation Scalability Conclusion

e Interval Iteration: No Cert vs. Cert e Certification Time vs. #states

¢ reach. probxexp. reward ‘

‘+inc|. parsing xexcl. parsing‘

n/a- B0
inval

>360 +

o128

Eeay

5 36| ;

=l +ty

8 8| it

£ 44 ¥+1§‘

£ +

o 2+ f

C<1 4 =

2438 1“600% ‘évu_\ 10° 10° 107
rnd number of states

e We developed fixed point certifi-
cates as a new standard for Certi-
fied Model Checking

e We compute certificates with ratio-
nal value vectors and check them
with exact, arbitrary precision
arithmetic

e Scalable to ~ 106 states with a
runtime within ~ 30 sec.

e Soundness formalized in Is-
abelle/HOL

e CT: daniel.zilken@cs.rwth-aachen.de

Institute of Technische
Science and Universitat
Technology .

Austria Miinchen

GPU accelerated probabilistic model checking

Jan Heemstra (j.h.heemstra@tue.nl), Anton Wijs (a.j.wijs@tue.nl)

/Objectives N

Position in global hash table ———»

e Perform probabilistic model checking entirely on a GPU. \

. . . Chunk 0 Chunk 1 Chunk 2
e Previous achievements with the GPUexplore model checker: " * o

e ¥ g
— Use hardware acceleration to speed process up [4]. fjv] fjv] fjv Z o

— Verify specification adherence with LTL formulae [3].

e New: compute the probability of invalid system behavior with PCTL

formulae [1, 2]. P 7J /7J ;

Global[0] = Global[1] = Global[2]

Matrix construction

«—— ouny

e Goal: construct (sparse) transition matrix on a GPU.

e Input: explored states are chaotically distributed over hash table.

Kernel 2

e Sparse matrix is stored in memory using CSR. format.

IREy ‘ 0 ‘ 2 ‘ 4 ‘ 5 ‘ 8 ‘ 8 ‘ 9 ‘ Global[0] i Global[1] i Global[2]
0 |01 09 Do v v v
1 Iy

04 |06 A N I] j H Z

2 | lc‘;'_u"'” 0‘3 2‘301‘4‘51 |
naices Kernel 3
3 0.1 01|08
0 1|2 3|4|5 6 7|8
4

Values 01‘09 04‘06 1.0 01‘01‘08 1.0

i i i Global matrix

Chunk 0 Chunk 1 Chunk 2

e Memory usage is main constraint.

e On-chip (a.k.a. shared) memory is fast and low latency.

———> Program flow

——>» Data flow

e After matrix construction, the CUSPARSE library is used to perform
matrix-vector multiplications, for the verification of PCTL formulae.

e Up to 855 faster than Storm, fastest on larger models.

—— GPUexplore
z o, Storm
Z 10
o
- 1
=i :
£ 102 i
= i
o0
= 3 4 5006 1 :
2 100 4 —_— t = i
~ i i j . i
1 1 T 1 1 1
1 1 1 1 1 1
1 T 1 1 1 1
: H H H H HE H
e Two prefix sums are needed: for row offsets and column indices. 104 10° 108 107 10°

_® [nterweaved prefix sum optimizing both memory access latency and usage. State count J

< References

@ ! [1] Heemstra, J., Osama, M., Wijs, A.: Towards End-to-End GPU Acceleration
- ' of PCTL Model Checking. Springer, Cham (2025)

[2] Heemstra, J., Wijs, A.: GPUexplore-prob: Markov Chain State Space Con-

° nVI DIA struction and Verification with GPUs. In: TACAS (2025)

‘ [3] Osama, M., Wijs, A.J.: Hitching a Ride to a Lasso: Massively Parallel On-
The-Fly LTL Model Checking. In: TACAS. Springer (2024)

[4] Wijs, A.J., Osama, M.: GPUexplore 3.0: GPU Accelerated State Space

Exploration for Concurrent Systems with Data. In: SPIN. Springer (2023)

TU/e

EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

ALA

https://github.com/egolf-cs/tacas25

ACCELERATING PROTOCOL SYNTHESIS AND DETECTING Dbeaxei,
UNREALIZABILITY WITH INTERPRETATION REDUCTION f_;a..._f.‘ i
Derek Egolf, Stavros Tripakis R
Northeastern University, Boston E

Key Contributions

e Synthesize symbolic distributed protocols represented in TLA™ Our approach uses standard CEGIS technique [Solar-Lezama).

[Lamport].

o Improve state of art in TLA™ synthesis (100x). Candidate P

i “ ” Failure Verifier | Success
o Synthesize a lock protocol “from scratch. < Cature
e Halt when no solution: unrealizability. VP e S, (TLC) PEoyp
o New search space reduction technique: Interpretation Reduction. P Counterexample
e Improved counterexample generalization for pruning. \.

Key Technical Ideas for Learner

Sketching [Solar-Lezamal]

)) . " g) o Naive learner: ignore cex, enumerate all protocols

Given an incomplete sketch with “holes,” find a correct completion. many expressions; model checking expensive
. e Pruning constraints: generalize counterexamples

Example sketch: Example completion discard protocols before model checking
Send(sre, dst) = Send(sre, dst) = _ _ _)

A 77 A has_lock]srd] e Equivalence reduction: do not use equiv. sub-expressions

A message = 177 A message’ = messageU {(src, dst)} avoid enumerating protocols in the first place

= 777, -

A has_lock’ = 777, A has_lock = has_lock|sre fals o Interpretation reduction: coarse, dynamic equivalence relation
Receive(sre, dst) := Receive(sre, dst) :=

N A (sre, dst) € message

A message = 777 A message = message \ {(src, dst)}

A has_lock = 777 A has_locK = has_lock{dst < true] Counterexample Generalization

safety cex: [z — a] —\>[x — 0]
=7

Problem Statement Sketch: (A, == 777, A @’ = 772,)
Bad Completion: (A; := true A 2’ =)
property ¢ S] I 110 solution Bad Completio.n: (Ay:=r=aNn 2’ =D)
sketch § ——— ynthesis protocol P s.t. Good Completion: (A4, := v =a A 2’ =a)
grammars G Tool P satisfies ¢ A P completes S Good Completion: (A, := 1 /A 2’ =b)
Pruning Constraint:
Teew =11 ([x — a]) # trueV 770([z — a]) #b

Experimental Results : ‘
o [n general, many completions violate 7.

o Checking P E 7, is much cheaper than model checking.

Scythe vs Polysemist Runtime (Realizable Experiments) o We generalize deadlock, safety, and liveness violations.
— — e ‘ o Prior work [FMCAD24] uses less exact pruning constraints for dead-
/d\ y=x lock/liveness.
g 10°F — y=0.Ix °
-E Interpretation Reduction
g 107
: Absolute Equivalence, e.g: +y =y +
2] . .
é‘) Interpretation Equivalence, e.g:
31; 10 é r+y=42+x, where A= {[z— 0,y — 0]}
S °%°
D-‘ L]
1001 00 — i 0! 102 103 o A comes from pruning constraints. E.g.,
. D={""(z—=0y—1)#1}—=>A={lz— 0,y — 1]}
Scythe runtime (sec.))
e Suppose we've enumerated y; enumerate x + y? No: y =4 = + v.
n = 171; worse: 11; scythe TO: 47; poly TO 15 o Avoids enumerating all “super-expressions” of x + ¥, e.g., x +x + y.
o Coarse eq. relation makes detecting unrealizability faster.
. . o [FMCAD’24] uses absolute equivalence for reduction.
Unrealizable Experiments (n = 123)
«Scythe (old): TO = 107 / HALT = 16 Theorem: If e; =4 e; and e; enumerated, skipping e; does not compromise
completeness
e Polysemist (new): TO =43 / HALT = 80
—Usually halted in < 60 seconds
—Did not TO unless Scythe did (References g‘“éﬁ::w;g e

BIEX TikZposter

ETHzirich

Department of Computer Science
Information Security Group

Pushing the Limit: Verified Performance-Optimal

Causally-Consistent Database Transactions

i G
e

Shabnam Ghasemirad Dr. Christoph Sprenger

1 Motivation

e Distributed databases (key-value stores)
e |solation of concurrent transactions,

realized by concurrency control protocols.
e Spectrum of isolation levels:

weaker to stronger

Transactional Transactional
Causal Causal Snapshot

Consistency Convergence ™
(Tce)

Read

Read (Strict)
Committed —> Atomicity —>
(RC) (RA)

Jsolation (81) ——> Serialzabiity

Eiger-PORT+

e Trade-off: isolation vs performance

e TCC previously conjectured to be the
strongest achievable isolation level for
performance-optimal reads in the
presence of transactional writes.

e We refute the conjecture and push the
limit to TCCv with our novel protocol
Eiger-PORT+.

e Concurrency control protocols are highly
complex and prone to design errors and
isolation bugs. — Deductive verification

Contributions

« Eiger-PORT+
> Stronger isolation guarantee
> Superior performance

< Protocol verification in Isabelle/HOL
> Refinement

> Reduction

2 Abstract Model: Isolation Level

We specify isolation as an abstract model
parameterized by an Isolation Level (IL).

The abstract model’s event system:

- States: (K, L) K: centralized multi-versioned
v key-value store
U: client views, capturing the
distributed aspect
- Events:
1) Atomic Commit
(K, U) commt (K, U)
2) View Extension
(K, U) view ext L (K, UY)

version

value: v

writer transaction: t | mmmp D

reader set: {1, ", .}

client reads the latest version

D : aclient's view U(cl) in its view for each key
Last-write-wins (LWW)

0 1 2 3 4 5 6 7
I - [[]

DoDREnE

L) event guard: a commit condition

Y parameterized on IL must hold
a key's version list (canCommity, = view closure under Ry)

ki o | t1 | 2 | 8

K ko

Dr. Si Liu

Luca Multazzu Prof. Dr. David Basin

3 Concrete Model: Eiger-PORT+

Eiger-PORT+ protocol:
Timestamp-based (uses Lamport clocks)

client cl's gst (global s*fe time): defines its view

o l|els v |6 |6 |w

. Commit (cl, t8, {ky, k)

2 | 0|2 |« I I I I (inserts the versions
L P into the KVS)

BN
ELEyOEE = "N What cl reads from the server in the

ordered by ct : p "
ed by cts abscence of its own writes above gst

- read-only transactions
- own write above gst
> or last write below gst

write-only transactions: two-phase commit

svr_register_read svr_prepare_write
cliént: RnliProg — client. WixnPrep

svr_commit_write
client: WixnCommit

cl_read_done
all keys read

cl_read_invoke cl_write_invoke

cl_wr

cl_write_commit
all servers? Prepared

RixninProg

cl_read

server: Reg SN

model:
(per txn)

client

I« N (" Commit)
ek (Wixncommit)

4 Correctness Proof & Invariants

Proof guarantee:
refinement (reach (protocol)) € reach (IL)

e refinement mapping:
r: Kand U reconstructed as shown above

a: client_write_commit and client_read_done
mapped to Atomic commit

e proof obligations:
canCommit, : needs invariants (below)

[\W\WV/: needs reduction

abstract state abstractevent __/now abstract state’
Isolation Level Specification (ai_’ r(s)

- simulation : mediator . simulation
function function functon

Refinement

Reduction (section 5)

Protocol Specification

e The relation of different timestamps in the model
and finding invariants

lemma 1st_map_le_lst:
"reach ep+ s =
1st_map (cls s cl) k < svr_lst (svrs s k)"

shabnam.ghasemirad@inf.ethz.ch Project repository:

5 Inverted Commits & Reduction

Inverted commits: pairs of client commits in
protocol executions not ordered by commit
timestamps.

svrz: prepare_write cly: cl_commit Svry: prepare_write svrp: commit write ci1: cl_commit | svry: commit_write
commit_tsp=8 commit_ts; =5

Can occur for causally independent
concurrent transactions.

Problem: Inverted commits would require
inserting rather than appending a
transaction’s version to the version list.

Can not be simulated by the abstract model.

Hence, refinement alone is not enough for
verifying the protocol.

Solution: o
e We introduce a /ﬁ/ \“\
restricted protocol i?z\ O]

model that doesn’t
produce inverted
commits.

Image source: C. Baier, J. Katoen.
2008. Principles of model checking,
p. 595, Figure 8.1

e We use reduction to transform any
protocol execution into one of the
restricted model such that:
reach (protocol) = reach (restricted protocol).

e This is achieved by commuting
independent concurrent events to
eliminate inverted commits. (see arrows
on the execution above)

6 Conclusions and Discussion

e Our Eiger-PORT+ protocol provides
TCCy, thus refuting an open conjecture.
e Eiger-PORT+ outperforms state-of-the-art

—o— Eiger — 5 Eiger-PORT —4a— Figer-PORT+

1
310

Throughput (txns/s)

0 200 400
Number of Clients

0 30

0 20
Number of Servers

e Refinement is not always enough

e \We deductively verify that Eiger-PORT+
satisfies TCCy, using a combination of
refinement and reduction.

SliQSim: A Quantum Circuit Simulator and Solver for Probability and Statistics Queries

S
4 @
&xx)’

1. Quantum system of n qubits

* Quantum state: complex vector |) with size 2™

Quantum state evolves: apply U on [)
—— Quantum gates:

— M o o € .._ — complex matrix U
- ‘ — with size 2" x 2"
TR

—— Aline is a qubit

Quantum circuit: a sequence of quantum gates

3. Algebraic Representation & Bit-slicing
+ Transform quantum state/gate into several bit
vectors/matrices

\/% (aw® + bw? + cw + d),

a,b,c,d k €Zand w = e™*
* a, b, c,d are decomposed into binary numbers
and further represented by BDDs

na =

Compact, Efficient, Exact (no precision loss),
and Easy for matrix/vector entries manipulations!

\

Tian-Fu Chen and Jie-Hong R. Jiang, National Taiwan University
{d11k42001, jhjiang} @ntu.edu.tw

VA

NN

AL Lab k

2. Binary Decision Diagram (BDD) \
A compact representation for bit vector/matrices

+ Boolean operations can be done efficiently
« 2™-dimensional vector = n Boolean variable
- Example: [0,1,0,1,0,1,1,1,0,1,1,1,0,1,1, 1]

/

Example:
ein/4
_ein/4-

=l

h[]i‘\-

4. Simulation & Probability and Statistics Queries
« Start from the initial quantum state

1] % & . Ty
F=XyX{...X_1 p = |0] B
and apply gates sequentially 0l %20

« Conduct measurement for the final state

9. [Ym)=11/2,1/2,1/2,-1/2]")

programming
3. Sample according to the probability

sample result = “01”

0.25*2+05=1

-

1. Combine all BDDs to form a multi-terminal BDD

2. Decide the probability of each node by dynamic

~

* Check the probability of certain property

1. Parse the condition as a Boolean formula
(.9, Fu =qo vV q1)

2. Update F < F A Fy, for all BDDs
— equivalently mask out states not
satisfying the condition

3. Decide the probability of the root node by
dynamic programming

4. Probability obtained!

paths not satisfying
the property

)

5. Supported Statistics

Probability of satisfying a Boolean formula
Probability of Hamming weight being in a range
Expectation value of a Pauli-string

Weighted sum of multiple properties

Whether the value of a property is in a range
* Probability amplitude of a basis state
* Exact spectrum of the probability distribution

Previous Publications & Open Sourced Tools

N .

2022, pp. 523-528.

a) Simulator — SIiQSim https://github.com/NTU-ALComLab/SIiQSim

&

1. Y.-H. Tsai, J.-H. R. Jiang, and C.-S. Jhang, “Bit-slicing the Hilbert space: Scaling up accurate quantum circuit simulation,”
2. C.-Y. Wei, Y.-H. Tsai, C. -S. Jhang, and J.-H. R. Jiang, “Accurate BDD-based Unitary Operator Manipulation for Scalable and Robust Quantum Circuit Verification,” in Proc. DAC,

in Proc. DAC, 2021, pp. 439-444.

3. T.-F. Chen, J.-H. R. Jiang, and M.-H. Hsieh, “Partial Equivalence Checking of Quantum Circuits,” in Proc. QCE, 2022.

b) Equivalence Checker — SIIQEC https://github.com/NTU-ALComLab/SIIQEC

Synthesis with Guided Environments

Orna Kupferman and Ofer Leshkowitz
Hebrew University of Jerusalem, Jerusalem, Israel

Synthesis of Reactive Systems

Reactive System — T = Finite set of input signals.
o

ite set of output signals

. Environment generates assignments to input signals iy, iy, i3, ... € 2!
. System generates assignments to output signals 04, 05,03, ... € 2°

. Outputs generated online: oy, is determined by iy, iy, ..., iy.
Synthesis —

. Given a specification ¢ of “good computations”,

automatically construct a reactive system that realizes ¢.

Dealing with partial visibility
(Back to Reactive Systems...)

When visiting your doctor do you -

(A) Share all medical info
with the elevator?

MED. CLINIC
ELEVATOR

(B) Follow a sign that
guides you to your floor?

ED. CLINIC
LEVATOR

F1 Dr. Seuss
Dr.Who

F2 Dr. Watson
Dr.Dre

F3 Dr. Phil

Dr. Pepper

TELL ME YOUR
SYMPTOMS, AGE,
MEDICAL RECORD,

Memory-State Trade-offs

E;
the work

\

TGE
Realizing ¢ Standard transducer
no visibility (V = @) (Fullvisibility and control)
no control (C = @) % Realizing ¢
1 state
m states

m memories

TGE
. Standard transducer
Realizing ¢ Product :TGEXEnv I
. o (Full visibility and control)
Partial Visibility\Control o
Realizing ¢
n states
n - mstates
m memories

Dealing with partial visibility

. The assignmentto H € [is Example:
hidden from the system. =i

. System should satisfy ¢ for all
assignmentsto H.

. Simple specification become
unrealizable.

Transducer with a Guided Environment

ATGE sends “programs” used by
Environment to assign guided outputs.

s

Specification: ¢ = G(i © o).
Hidden: H = I = {i}.
Guided: G = 0 = {0}.

<OPY previous(y) g v

program = “copy (0 0"

—0

Environment needs memory.

Memory Monotonicity

More visibility \ guidance \ Less
memory. —

Memory

1. Increasing visibility (viewing also h € H) can

Visibility \ Guidance

only reduce needed memory.

i to h can be hard.

ded i

into p|] If the system sees more or
guides more, the environment
can remember less.

2. Increasing guidance (guiding also ¢ € C)

can only reduce needed memory.

Assignment to ¢ can be hard-coded into programs

p=ico
={i},0 ={o}and H = {i}.

Think of a two-digit prime number
P

What's going on?

Multiply digits and subtract from
* Magician - P
What's the first digit of the

1.Gains partial information. result?

2.Guides fish step-by-step.
«Fish -

1.Picks p adversarially. Subtract first digit from p?.

. : What's the second digit of the
2.Follows instructions - result? ’

Remembers values & Performs

calculations.
p+2 s prime as well |

Transducer with a Guided Environment

Around of interaction with a TGE:
(I=VUH,0=CUG)

« Envevaluates p(m, h) = (m’, g).
« Updates memory tom'.
« Env generates: * Sets guided out to g.

« Visible input v & Hidden input h.

Controlled

* TGE reads visible input v:

« Updates stateto s’.

* Generates -
Controlled output ¢ & Program p.
c€2andp:M x 2 5 M x 26.

Env. Memory

Solving SGE — Synthesis with Guided Environments

The problem: Synthesize a TGE that realizes ¢ with H hidden, G
guided and at most k environment memories or determine that there
is no such TGE.

Theorem: (1) Atree T is accepted by Afi,H,E iff it realizes ¢.
(2) A%, 1.6 s of size [M| - exp(|]).

Reduce synthesis to the non-emptiness of A , .:

1. Search for a finite witness T for non-emptiness of AIT!,H,E in EXPTIME.
2.1f empty - Not realizable.

3. Otherwise - T describes a TGE realizing ¢ with H hidden and G
guided.

(c y: SGE is 2EXPTIME in || and EXPTIME in |M|.)

Non-Zero-Sum Games with
Multiple Weighted Objectives

PRESENTER:

- Feinstein

We introduce and study non-zero-sum multi-player games
with weighted multiple objectives.

In these games, the objective of each player consists of a set
a of underlying objectives and a weight function w: 2¢ > Z
that maps each subset X of & to the utility of the player when
exactly all the objectives in X are satisfied.

The weight functions lift the setting of non-zero-sum multi-
player games to the general quantitative case, allowing a rich
reference to the underlying objectives.

Settings:

+ Several interacting agents (robots, users)

« each having an objective

. h objective i of weighted sub-

My goalis to intercept. My goal s to receive
con My goalis o keep]\"Im)

k-player weighted multiple objectives

Set of objectives a = {a;, a,,..., @} @SV (q isa
Blichi objective)

Set of weight functions {wy, wy, ..., Wi} wii2¢ > 17
(one for each player in the game)

For a play p:

-sat(p,@) S a The set of objectives that p satisfies
- For every i € [k], value(p,a,w;) = w(sat(p,a))

The utility of Player i

Stable profiles in weighted k-player games:

Zero-sum games: No overlap among objectives, find the winning
players

Non-zero-sum games: Overlap among objectives, find stable
profiles

A predicate describes desired utilities of the play.
Forexample:uy > 2A (u; <3Vuz =1)

Foraset S € [k] of system players, and a predicate P.
The Partially-Fixed NE with Desired Utilities (DNE) problem is to
return an S-fixed NE 7 that satisfies P.

Our contribution:
Limitation on the weights | Z¢ N DNE
No limitation PSPACE-complete [KS 24] | PSPACE-complete (already for k=2)
N i NP-complete [KS 24] | NP-complete (already for k=2)
Additive PSPACE-complete PSPACE-complete (already for k=2)
Al positi NP-complets NP-complete (already for k=2)
additive

Applications of k-player weighted multiple objectives

We study the extension of the game by payments, with which players can
incentivize each other to follow strategies that are beneficial for the paying
player. We show how such payments can be used in order to repair
systems.

Games with Payments

{ay, ay,..., ¢} @SV
Set of Buchi objectives, one for each player

Ry Ry RE REN
R, the reward Player i receives when objective q; is satisfied

A payment function p: [k] X [k] » N
p(i,j) the amount Player i commits to pay Player j when a; is satisfied

For a play p, W (p) is the set of objectives satisfied by p

The reward for Player i The payment to T:'e payment from other
other players players
The utility of

Player i is: R — Z p(i,j) + Z p(, i) i€ W(p)
utility;(p) = Jelid jewe)
Z pG.0 i€ W(p)

JEW(p)

The payment from other
players

The monetary-based system-repair problem is given a set of
system players S, and a predicate P to decide if there exists a
payment function p: § X [k] - N and a profile 7 such that 7t is
a solution for the DNE problem over the payment game with
the payment function p. N

< Yoav Feinstein, Orna Kupferman,
Noam Shenwald

THE HEBREW
yoavfeinstein@mail hujiac.i, UNIVERSITY
orna@cs.huji.ac.il, OF JERUSALEM

noam.shenwald@mail.huji.ac.il

STREAM-BASED MONITORING OF
ALGORITHMIC FAIRNESS

Jan Baumeister, Bernd Finkbeiner, Frederik Scheerer, Julian Siber, Tobias Wagenpfeil

UNFAIR Al SYSTEMS

MONITORING FAIRNESS
PROPERTIES

% _’Q% _'
2\ & Jo

COMPAS

Al is used for critical decisions. COMPAS is an Al tool to
predict recidivism. ProPublica revealed that COMPAS
scores are biased against Afro-Americans.

unfair '95:’“ fair

© &

P@> @@ 3o [TH) - P> @ QD 30 R | <€

We propose to use the RTLola monitoring framework for
detecting unfairness during the deployment of black-box
Al systems through estimating conditional probabilities.

SPECIFYING EQUALIZED ODDS WITH RTLOLA

input id, score

input event, group I ﬁ
1§51 6 | I3

[EEc

Input streams representing the COMPAS events.
We differentiate between Screen and Recidivism

output tp_event

1]
tp_event(b) & e
III" —‘.aggregate(over: 2y, using: EI)

tp_event (Ha) @ Illﬁ —‘

tp_event(b)

output tp_ratio ’——l

Parameterized streams that store the recidivism
event of an individual as well as their score

Use aggregations to check whether a person
reoffended over 2 years and to count how many
individuals from a group have reoffended

tp_ratio(’) 5 5 5 6 6 6 6 6 Parameterized streams to group individuals and
10 10 10 11 11 11 11 11 calculate the conditional probability per group.
l For the true positive ratio, aggregate over
. 5 5 5 5 i 5 5 5 individuals with a high risk
tpratio((L8) | 0 | 10 |16 | T0 | T | T |11 | 0

MONITORING COMPAS SYNTHETIC DATA RUNTIME COMPARISON

Pooooocoocoor
oRrNwhUoNmLO

The monitor detects that the
COMPAS system violates equalized
odds around 3 months after the
first outcomes are observed.

: : . Runtime RTLola
—— TP African-American We contribute a v 10 o Runtime RisigWave
—— TP European-American benchmark generator for W= Runtime SQLite
—— Difference constructing synthetic

] data of scaling size and

| complexity, which model
| university admission and
| A/‘""*M Jjob hiring.

,./\'/v ‘ | | | | | | This allows a thorough

runtime evaluation and 100 200 300 400 500 600 700 800 900 1000
Number of Applicants
A// l Monitoring with RTLola is faster
®

comparison.

|
1
Qca

1072

than implementations based on

[3K] [35
£ ° SQLite and the streaming database
/ o RisingWave on the synthetic data.

:\ vy C I S P A %RTLola 3lst International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS 2025)

HELMHOLTZ-ZENTRUM FUR

%A | INFORMATIONSSICHERHEN www.rtlola.org

CENTER FOR
PERSPICUOUS
COMPUTING

Funded by
the European Union

Christoph Jabs!, Jeremias Bergl, Bart Bogaertsz, Matti Jarvisalo!

University of Helsinki, 2KU Leuven & Vrije Universiteit Brussel

@ TACAS'25
Presentation Wednesday 11:30

Many real-world problems have
multiple conflicting objectives.
Aim: Pareto-optimal solutions
Linear combination of objectives
not sufficient

-

Constraints: propositional formula,
objective(s): linear function over variables
Efficient for real-world optimization problems

VeriPB proofs for multi-objective MaxSAT
No modifications to VeriPB proof system
Open-source implementation for three
algorithms

Showing low overhead of proof logging

Solution

R
l

verifies

Solver

e

L.

writes

2

w
Checker

E@%

Proof

Write log of reasoning steps while solving
Simple or formally verified checker
Checking proof verifies correctness of result

[BOGAERTS ET AL. JAIR23]

Pseudo-boolean (cutting planes) proof system
Derive constraints by linear combination
Redundant constraints (RAT generalization
[Jarvisalo et al. IJCAR'12])

Native single-objective support

Preorder (originally for symmetry breaking),
witness for redundant constraints must be
smaller in preorder

Certificate that at least one representative solu-
tion for each non-dominated point was discov-
ered.

Unmodified VeriPB proof system

Encode Pareto dominance as preorder in proof
Now Pareto-optimal solutions can only be
explicitly excluded in the proof

It the proof terminates as unsatisfiable, all
Pareto-optimal solutions must appear in the
proof

Syntactic restrictions

First step in proof must load the Pareto order
Order must never be changed

Blocking all solutions that are worse than the
current one
Similar to solution-improving constraint

4 %
3 &
Infeasible region

3 5 o Solutions
o Pareto-optimal solutions

Pareto dominance cut

0o 1 2 3 4
O,

Certifying a Pareto dominance cut for solution «

Map each weakly dominated solution to «;
Redundant with « as witness

Exclude « itself

Derive cut from steps 1 and 2

[SOH ET AL. CP'17]

Find a solution SAT solver

Introduce PD cut
Find a dominating solution
If yes, goto 2
If no, previous is optimal, goto 1

Proof needs to cover

SAT solver reasoning
CNF Objective encodings
PD cuts (see above)

[CORTES ET AL. TACAS’23]
Execute P-Minimal within upper-bounds on
objectives
Once done, loosen upper-bounds

Upper-bounds on objectives can be ignored in proof
— same as P-Minimal

[JABS ET AL. JAIR24]
Bi-objective
Optimize first one objective, then the other

When minimizing the second objective, PD
cuts can be strengthened to unit clauses

In proof

Derive lower-bound on first objective
Certify PD cut

Strengthen PD cut based on known
lower-bound

P-Minimal Lower-Bounding BiOptSat
o 5400 - - -
E 1000 f”x X){“‘xx' & 4 Algorithm W%TE:;Eg v:?lzcgkgl?ngg
g7 e e P-Minimal 1233 47.52
s i & Lower-Bounding 1.220 21.81
a1k ¢ g BiOptSat 1.247 29.70
10100 5400 10 100 5400 10 100 5400

No proof logging (s) No proof logging (s) No proof logging (s)

christophjabs.info/tacas25

Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordstrém:
Certified Dominance and Symmetry Breaking for Combinatorial Optimi-
sation, JAIR, 2023.

Jodo Cortes, Inés Lynce, and Vasco M. Manquinho: New Core-Guided and
Hitting Set Algorithms for Multi-Objective Combinatorial Optimization,
TACAS, 2023.

Christoph Jabs, Jeremias Berg, Andreas Niskanen, and Matti Jarvisalo:
From Single-Objective to Bi-Objective Maximum Satisfiability Solving,
JAIR, 2024.

Matti Jarvisalo, Marijn Heule, and Armin Biere: Inprocessing Rules, 1J-
CAR, 2012.

Takehide Soh, Mutsunori Banbara, Naoyuki Tamura, and Daniel Le Berre:
Solving Multiobjective Discrete Optimization Problems with Propositional
Minimal Model Generation, CP, 2017.

- THEm
MLTL Formulas to Regular Expressions "

Zili Wang’, Katherine Kosaian®, Kristin Yvonne Rozier’
“lowa State University, *University of lowa
[ziliw1, kyrozier|@iastate.edu, katherine-kosaian@uiowa.edu

. Formally Verifying a Transformation from :

The results of formal verification are only as trustworthy as e Available on the Archive of Formal Proofs under the
their input specifications. As such, the WEST tool was entry “Mission-time Linear Temporal Logic to Regular Expressions”
created to facilitate writing specifications in Mission-time e \We formalize each operation of the WEST algorithm in
Linear Temporal Logic (MLTL) by visualizing MLTL and prove overall correctness of the algorithm.

formulas as regular expressions (regexes). To certify the e \We use Isabelle/HOL's code generator to obtain an
correctness of the WEST tool, we formally verify the implementation of the WEST algorithm in Haskell

correctness of the WEST algorithm in the interactive
theorem prover Isabelle/HOL. We then generate a code

WEST and_bitwise WEST_simp \
i ~3100

export from our verified development in Haskell and use - v LoC
this to experimentally validate the existing WEST tool. WEST_and_simp WEST o simp
Formalize Temporal e

WEST global = shift —» WEST future »
. . 2000 WEST
.......... WEST | High Confidence Loc Isabelle
Algorithm Code Export ST

WEST _release

TopLowl Code Export
Validate Correctness
—» WEST_reg_aux WEST_num_vars
v ~700
k WEST _reg convert_nnf ID
Mission-time LTL (MLTL)

MLTL is a finite version of Linear Temporal Logic with SHEgTen WEST carreei: .)
di . . b d h | fixes p::"(nat) mltl" and #::"trace
iscrete integer time bounds on the temporg operators. assumes "intervals welldef "
Here are some examples of traces (assignments of assumes 7 long enough: "length 7 > complen mltl ¢"
variables through time) that satisfy various MLTL formulas: shows "match 7 (WEST_reg ¢) «— semantics mltl m "

Operator Syntax 0 1 2 3 4 5 6 7
= Tool Validation
TR Geevewavowswgwaill ToolValidaton
in the Future F[o.4]p \,, >C> ><> .CD N\/\D ’Q ’/Kj ’C) Prot Otyp e //;{57 \\ » WEST
i | s |O-0-0-0-0-@-O-O) 7*) sabell

\
~ Unverified Verified
~N Y
Release PR,q |)”C j’@*@*@”@”@’@@ Equivalence Check Equivalence Check
From Isabelle/HOL

: (~1150 LOC)
MLTL — Regular Expressions Test suite: 1662 formulas that targets every combination

Regular expressions (regexes) describe which variables of o_p.erator nesting _
must be true or false at certain timesteps. We say that a Verified check: holds on 1658 formulas, times out on 4
regex matches a trace. For example: Example - (7p, U[0,2] =p,) R[0,2] (p, U[0,2] =p,)
e Fix a variable ordering 0,1 5,1 0,8 Unverified check: Succeeded on all 1662
{Py P} [] maten
P, P, P, .
e 1=true, 0 = false, p, P, P, Speed Comparison
S = any value | I !
0 1 2

The WEST algorithm timeouts: 91 Speed Was nOt the
Transforms MLTL — Regex 581558 55,55 55 55 gL focus of this work, but
Given an MLTL formula, T meouts: 179 surprisingly fast!

o
S
15}

1000 random formulas

computes the regular expressions .
e Operator nesting

which captures all the satisfying

ss,1s,1s,51,88,88,88

Number of formulas solved

traces of the formula Siale s leslen s 400 depth = 10
For example on (p,Uy, 4P,) sl als ataalise e Maximum interval
0 [1,6]T17° =
WEST produces the following: Sttt cect o SRUTEBSSD
— st e Number of variables
—— WEST Isabelle _
[E]5. B8 m] f"0 1071 1072 10°3 100 1075 107 =10
Ty Total Time Elapsed (s)
Check out all of our work here — % e fapse ¢
west.temporallogic.org [OL
31st International Conference on Tools and Algorithms Acknowled%ments: This work is supported by the NSF-GRFP 2024364991, NSF CAREER Award CNS-1552934, _// -:‘C’C;i
for the Construction and Analysis of Systems (TACAS), and NSF CCRI-2016592. Any opinion, findings, and conclusions or recommendations expressed in this material {J\5.5) [

May 5-8 2025, Hamilton, Canada are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.

INCREMENTAL SAT-BASED ENUMERATION OF
SOLUTIONS TO THE YANG-BAXTER EQUATION

Daimy Van Caudenberg!, Bart Bogaerts'?,
Leandro Vendramin?

Declarative Languages and Artificial Intelligence section, KULeuven, Leuven, Belgium
2Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium

VRIJE
UNIVERSITEIT

BRUSSEL

3Department of Mathematics and Data Science, Vrije Universiteit Brussel, Brussels, Belgium

INTRO

1.

THE YANG-BAXTER EQUATION

e Yang-Baxter equation (YBE) originally introduced in context

of statistical [Yan67] and quantum mechanics [Bax72].

Applications in knot theory, quantum computing...

We focus on a subset of solutions.

e Finite, involutive, non-degenerate, combinatorial solutions.

e These solutions have relations to group and ring theory.

e They can be studied using an equivalent mathematical struc-
ture: non-degenerate cycle sets.

ENUMERATION

e Enumerating all (non-isomorphic) solutions to the YBE is an
open problem!

e A database of solutions could inspire:
e experimentation,
e examples of algebraic structures to study,
e and counterexamples to previous conjectures...

e [AMV22] enumerated solutions up to size 10 using a con-
straint programming approach with static symmetry breaking.

SAT MODULO SYMMETRIES

Su
=
oz
2L
-2
&>
.
(9]

3. MINIMALITY CHECK
FOR YBE

Boolean Satisfiability (SAT) problem decides if there exists a
satisfying assignment for a given propositional formula.

e SAT solvers can:

e decide if a formula is satisfiable,

e enumerate satisfying assignments (if they exist)...

We encode the mathematical problem as a propositional for-
mula,

e hence, a satisfying assignment corresponds to a solution.

e SAT Modulo Symmetries (SMS) was originally introduced in
[KS21,KS24].
e |t forces a SAT solver to generate only non-isomorphic solu-
tions during the search:
e Obtain a partial interpretation from the SAT solver.
e Perform a Minimality Check:
e verify if the assignment can be extended to a complete
assignment that is lexicographically minimal.
e if this fails, the solver aborts the current branch of the
search tree by learning a new clause.

PARTIAL SOLUTIONS

SMS introduces breaking constraints during the search, so,

only a partial solution is known...

This is an incomplete solution that can still be extended to a

well-defined solution.

A partial solution P is lexicographically minimal iff one of its ex-

tensions C' € Z'(P) is lexicographically minimal,

e where Z'(P) is the set of all complete solutions that P can
be extended to.

MINIMALITY CHECK FOR YBE

e Does there exist a permutation 7 s.t. the image of the cur-
rent (partial) solution P under = is strictly smaller than P?
e If so, use 7 to exclude P and its extensions!
e Find breaking permutations by either:
e performing a backtracking search over the space of possible
permutations,
e or by encoding as a SAT problem what it means for a per-
mutation to be useful.

RESULTS

FUTURE WORK

|A

4. RESULTS & CONCLUSION

Time (s.)

Enumeration Time per Size

1064

1044

1024

100 4

10724

10714

e Certifying the results.
e We obtain the same results as [AMV22], but that only
means that we are either both correct or both wrong...
e Enumerating related structures:
e racks, used to enumerate skew cycle sets.
e skew Cycle Sets, correspond to non-degenerate set-theo-
retic solutions.
e biquandles, applications in knot theory.

2 1 6 8 10
Problem Size

=®= AMV22 - Total Time AMV22 - Isomorphism Check Time

=@= Backtracking Approach - Total Time -+ Backtracking Approach - Minimality Check Time
SAT-Based Approach - Minimality Check Time

=®= Incremental Approach - Total Time

[AMV22] Akgiin, O., Mereb and M., Vendramin, L. (2022). Enumeration of Set-Theoretic Solutions to the Yang-Baxter
Equation. In Mathematics of Computation. 91(335)

[YAN67] Yang, C. N. (1967). Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Func-

tion Interaction. In Phys. Rev. Lett. 19 (23).

[BAX72] Baxter, R. J. (1972). Partition function of the Eight-Vertex lattice model. In Annals of Physics 70(1)

[KS21] Kirchweger, M. and Szeider, S. (2021). SAT Modulo Symmetries for Graph Generation. In CP LIPlcs, vol. 210.
[KS24] Kirchweger, M. and Szeider, S. (2024). SAT Modulo Symmetries for Graph Generation and Enumeration. In ACM
Trans. Comput. Log., 25(3)

Contact: Daimy.Vancaudenberg@kuleuven.be

AT

Karlsruhe Institute of Technology

Application-oriented Formal Verification Research Group
Institute of Information Security and Dependability (KASTEL)

{teuber,philipp.kern}@kit.edu

7]

71

s
ik
K
N
7
7
o

Val

a

@
7
AN

q

Propagate Z' D fi)(x)

%
Q
A
5)
/)

N
N\
%

;\

Single NN verification via Zonotopes

m Abstract Transformer for W - Z +b

Revisiting Differential Verification:
Equivalence Verification with Confidence

Samuel Teuber | Philipp Kern | Marvin Janzen | Bernhard Beckert

SO v”‘.

v \/

0O
0
P’%
7
»\ W
2
i
e
'g\

S

Karlsruhe Institute of Technology

Equivalence Properties

For ReLU NNs f;, f, input set X C R’
and a p-norm || - ||p:

e equivalence [2, 3, 4] ”’ag

Vx € X.JI(X) — B0 < &

. Vo
Top-1 equivalence [2] \”’;':]
Vx € X.argmax; f; j(x) = argmax; fz j(x)

Classification Equivalence

£

- m Differential verification
significantly helps with -

" equivalence.

~ m Not helpful for Top-1-

equivalence

Lack of asymmetry in

m Abstract Transformer for ReLU(Z)

Differential Verification via Zonotopes
Also propagate 2}, 2 £{'(x) - £7(x)

Z =((91 92 93),¢)

.

Top-1 property

Requires distinction over nine cases

A Zonotope Transformer for ReLU
Differences

ReLU(Z) — ReLU(Z>) =
=ReLU(Z;) - ReLU(Z—Z,)

m Use differential bounds for
LP formulation

m Verify classification
equivalence

m Threshold T > 0:
Confidence of f,

Differential Verification for Classification
¢ equivalence provides no guarantees for resulting classification!

For all k:
Check max < 0 for all j # k:
max (22 (x)); — (22 ()

s.t. (Z1 (X))/+ T< (Z‘] (X))k
Za=21— 2o

(I #K)

0.6 0.8 1.0

Linear Softmax Approximation

A single polytope over-approximation of
outputs with confidence > §:

{z ER"| AlLizi—2z; > In (%)}

J#
{z € R"| softmax (z), > §}

U

Building on confidence-based
verification [1]:

5-Top-1 equivalence .

fi, f> have the same classification for ev-

ery input where softmax(fi(x)) > ¢

Across 5 benchmarks, VeryDiff (our
tool) outperforms other (non-)differential
NN verification tools:

Speedup

Benchmark Equiv. Counterex. | remPCCCUP
(C240%) | 183 (- 2.0%) — —

142 373 80912

_ ACAS 3 72248 36297.0
Fl - 109 1413 10070.5
Sg 150 154 19541
§ © CI0LI%) | 62 (-43.6%) = —
g MNIST 103 126 1662
(VeriPrune) | Marabo 24 1839 13908

110 (516.9) (42208)

= (739.7%) | 161 (1 103.8%) — —
R 79 431 161347
ERY MNIST el (F115%) | 242 (1404.1%) — —
Z (VeriPrune) | Ne 48 45 10868

VeryDifl (ours) | 77 (327.8%)

d-Top-1 | LHC . S-CROWN) 18 { - 3245 112743

REEERES

[1] Anagha Athavale et al. “Verifying Global Two-Safety Prop-
erties in Neural Networks with Confidence”. In: CAV'24.
DOI: 10.1007/978-3-031-65630-9_17.

[2] Marko Kleine Biining et al. “Verifying Equivalence Proper-
ties of Neural Networks with ReLU Activation Functions”.
In: CP’20. pboI: 10.1007/978-3-030-58475-7_50.

[3] Brandon Paulsen et al. “ReluDiff: differential verification of
deep neural networks”. In: ICSE’20. pol: 10.1145/3377811.
3380337.

[4] Samuel Teuber et al. “Geometric Path Enumeration for
Equivalence Verification of Neural Networks”. In: ICTAI'21.
DOI: 10.1109/ICTAI52525.2021.00035.

-

KIT — The Research University in the Helmholtz Association

www.kit.edu

Weakly acyclic diagrams: A data structure for infinite-
state symbolic verification

Michael Blondin!, Michaél Cadilhac?, Xinyi Cui®, Philipp Czerner?®, Javier Esparza

L Université de Sherbrooke, Canada; 2

3 and Jakob Schulz’® [u]s

DePaul University, Chicago, USA; 3 Technical University of Munich, Germany

o Weakly acyclic languages: all cycles in

DFA are self-loops

o closed under union, intersection and com-
plementation

Oon

J

(1. Introduction N (4. Example of a Binary Operation h
‘ Ordered Binary Decision Diagrams ’ [intersection(q1, g2) ~ qina]
OBDDs) [1. 2 1. check base cases
(5) 1, 2] _ B _ o given nodes for Ly
o data structure representing fixed- SN =WVER=49 = G2 =40 and Ly compute
length languages O q1=¢gsr = qin2=¢q2 and @2 = g+ = Q2 = q1 node for Ly N Ly
o efficient top-down dynamic program- 2. compute successor tuple siny and flag binz for ging o memoization to
ming for operations o simala] = { SELF if s1[a] = q1 A s2[a] = g2 avoid exponential
o used for finite-state symbolic model- ! intersection(si[al, s2[a]) otherwise complexity
checking O b1y = b1 A b
o J
we generalize OBDDs to ' g ™
<{ a class of infinite languages 5. Pre Operatlon
¢ Transducers: automata over the alphabet ¥ x 3 for fixed-length regular relations R C ¥* x ¥*
[Weakly Acyclic Diagrams o Preg(L) :=={u € ¥* : (u,v) € R,v € L} for a relation R and a language L
o data structure representing weakly
acyclic languages [Transducer for relation R] [Weakly acyclic DFA for L] PTeR
© maintains algorithmic advantages of G
OBDDs
c
o can be used for model checking in s ‘ — ‘ —>
infinite-state systems
- J
o algorithm computing Preg(L) given transducer for R and weakly acyclic DFA for L under
(2 Weak]y Acyclic Languages\ assumption: language Preg (L) is weakly acyclic

© main idea: apply powerset construction on pairing of transducer and DFA contracting cycles
in the process

[pre(M = {(po,q0)} ~ qm]

o M set of state pairs, representing

LS JUE one state in DFA for Preg(L)

2. My = Upes{@,d) : (p,q)
{ if M, is marked
3. smla] =

otherwise o
4. by <= 3(p,q) € M : p,q both accepting states

Y PCL N
p P4 q o use of markings to detect and re-

SIS move cycles

pre(My) polynomial-time improvement if

input transducer and DFA satisfy
specific condition such that deter-

e ~ 5. unmark M minism is guaranteed
3. Weakly Acyclic Diagrams | \- J
o data structure representing weakly acyclic | s . o 13)
o ftable Ofgnodes ¥ acy 6. Application: Backwards Reachability
o Naks sie tlsaiiier, GoaEsmEms, e o system as a set of configurations with a transition relation like lossy channel systems, Petri
- ﬂag ’ o nets or broadcast protocols
o Backwards Reachability algorithm: computes the set of all predecessors of a given upward-
closed set of configurations, used for safety verification in systems [3]
o use Weakly Acyclic Diagrams for Backwards Reachability
* set of configurations ~» weakly acyclic language
% transitions ~ transducers
% predecessor computation using pre
[Left: Petri nct Right' transducer encoding transition ¢]
id succ. tuple s flag b I ;)
gy [SELF, SELF, SELF| 0
ki I e AQX_L&K_ZOM)OX_L&A_)OQO(#_%O
a2 gz, SELF, qy] 0 S ! !
a3 [SELF, g2, gp)] 1
qa (2, g5+, g5+ 0 s = ~
S) 7. Experimental Results
e ~ o library WADL for weakly acyclic dia- Benchmark BML McScM WADL
References grams implementing backwards reach- -
[1] S. Akers. 1978. ability for lossy channel systems, Petri tep_simplest_err 2'04 0401 0.04
[2] S. Chaki and A. Gurfinkel. 2018 nets and broadcast protocols BAwCC_en111 0(1); 13 312 882
: : : : . tcp_simplest . . .
[3] A. Finkel and Ph. Schnoebelen. 2001. © Con'lpare'd WADL to eStabhshed safety peterson_3 to to 19.50
[4] T. Geffroy, J. Leroux, and G. Sutre. 2017. Yeﬁﬁ&:;fg);‘l éools SILK, M) ring2 0.36 50 0.04
4hil (6] brp_like_modified 0.39 0.39 0.29
[5] A. HeuBiner, Gall T. L., and G. Sutre. 2009. i . .
i ¢ results show that WADL is competitive, simple_server 0.13 0.25 0.06
(6] ?‘FG?{HJC%;C‘ Mg‘}fer"/ G'BDe1zan;0°d7G‘ Kalyon, solving most of the instances pop3 400.20 4.73 2.07
I asSKin, an . an begin. o
\ ’ ° AN J

SV-COMP’25 and Test-Comp’25 Posters

Software Systems

Participants

Table 1: Competition candidates and representing
jury members; Hors Concours participants are not
listed since they are not represented by a jury mem-
ber. " for first-time participants, ™ for meta-
verifiers

Participant Jury member Affiliation

2LS V. Malik BUT, Czechia

AISE Z. Chen NUDT, China

APROVE N. Lommen RWTH Aachen, Germany
BRICK L. Bu Nanjing U., China
BUBAAK M. Chalupa ISTA, Austria
BUBAAK-SPLIT M. Chalupa ISTA, Austria
CoOPERACE ™2 . Vojdani U. Tartu, Estonia
CPACHECKER M. Lingsch-Rosenfeld LMU Munich, Germany
CPV P.-C. Chien LMU Munich, Germany
DARTAGNAN H. Ponce de Leén Huawei Dresden, Germany
DEAGLE F. He Tsinghua U., China
EmercenTaera L. Bajezi BME Budapest, Hungary
ESBMC-INCR T. Wu U. Manchester, UK
ESBMC-KIND T. Wu U. Manchester, UK
GDART F. Howar TU Dortmund, Germany
GOBLINT S. Saan U. Tartu, Estonia
HORNIX"®" M. Blicha U. Lugano, Switzerland
JAVA-RANGER S. Hussein Ain Shams U., Egypt
JBMC P. Schrammel Diffblue, UK

KORN G. Ernst, LMU Munich, Germany
MLB L. Bu Nanjing U., China

Mopsa R. Monat Inria & U. Lille, France
Nacpametanew H. Wachowitz LMU Munich, Germany
PROTON R. Metta TCS, India

RACERF " T. Dacik BUT, Czechia

SVF-SVC' M. Richards U. New South Wales, AU
SV-SANITIZERS S. Saan U. Tartu, Estonia

SWAT N. Loose U. Luebeck, Germany
SYMBIOTIC M. Jonas Masaryk U., Czechia
THETA L. Bajczi BME Budapest, Hungary
THORN"® L. Bajezi BME Budapest, Hungary
UAUTOMIZER M. Heizmann U. Freiburg, Germany
UGEMCUTTER D. Klumpp U. Freiburg, Germany
UKoiak M. Bentele U. Freiburg, Germany
UTAIPAN D. Dietsch U. Freiburg, Germany

Cummulative Score

s

BubaakSplit —9—
cBmC - x

Cumulative score

Figure 1:
C-Overall.

Quantile plot for the category

Table 5: Overview of the top-three verifiers for each
category; measurements for CPU time rounded to
two significant digits.

Rank Verifier Score CPU Solved Unconf. False Wrong
Time Tasks Tasks Alarms Proofs
(in h)
ReachSafety (1120n i,
1 CPAchecker 10368 150 6653 230 2
2 ESBMC-kin0 S717 69 6830 599 14
3 cry. 7755 160 6235 438 21
MemSafety (1012 ke,
1 CPAchecker 18 3818 1
2 svmone 23 3671 0 1
3 UAvtowmzn 37 2280 2 1
ConcurrencySafety (7 ke max. score 5739
1 Deagle 4604 31 2500 38 1 1
2 Darraaax 3385 17 2012 30 3 3
3 UGeuCurrm 314450 1805 48
NoOverflows (s211 sk mas. score 13207)
1 UAutomizer 11074 68 6724 13
2 UTarax 10736 74 6622 1 1 2
3 UKoik 87854 5910 2
Termination (2775 e, max
3685 24 1942 159 1

2 UAvTouzER 3334 18 1667 4
3 APROVE, 219 32 1006 13
SoftwareSystems (1520 ko o
1 CPAchecker 2178 30 2022 55
2 Morsa 2086 20 2212 0
3 some 1822 6.1 1487 231 1
FalsificationOverall (37os sk, max. score 10975
1 CPAchecker 6999 100 7100 o7 2
2 Svmonc 6450 28 6379 37
3 Bunax 556518 5739 236 9
Overall (33353 tasks, max. score 555

UAutomirer 29710 270 16677 196 8
2 [Eap— 26786 240 20506 312 6 1
| Svmiome 2069163 14324 628 3
JavaOverall (675 tas, max. score 20)
1 676 5.7 491 13 1
2 628 032 430 91
3 GDarr 621 21 460 15

14" Competition

on Software Verification

Dirk Beyer

Table 2: Algorithms and techniques that the partic-
ipating verification systems used; "°" for first-time
participants, © for hors-concours participation, and
Me@ for meta-verifiers

falue Analysis

Predicate Abs
Symbolic Exccution
ARG-Based Analysis
Automata-Based Analysis
Task Translation

CEGAR
«| Bounded Model Checking

| Bit-Precise Analysis

N

APROVE v
BRICK v

®
NN
BN

NN

coAsTAL® %
ConcunmTW2T

NN
NIN

BN
NN
N
NN
[N
LN
RN
EENINN

LUDWIG-
MAXIMILIANS-
UNIVERSITAT

Table 3: Solver libraries and frameworks that are
used as components in the participating verification
systems; "°" for first-time participants, © for hors-
concours participation and ™" for meta-verifiers

CPACHECKER
SMTINTERPOL

ULmvaTE
MATHSAT

73

Tool
2Ls
AIsE. v
APROVE

BRICK

BUBAAK

CBMC? v v
COASTAL? v

CPAcHECKER
CPALOCKATOR?

< CProveR
Esaye
e

< MIMSAT
Apron

ANENENEN

ANENENEN
ANENENEN

CsrQ” v v
DARTAGNAN v

[N
BN

PRGN
PN

EvencesTusrs /.
ESBMC-on
ESBMC-taxn
Frava-C-SV
Gazen T ® v v

2%
|« <xls
SR
S
3 990 SR
| <
2
4o s

BN
BN

Lazy-Csra v v v
LP-cupexen

L v
Tockswmi® v

Merava v
METAVAL £

LN

NITWIT
PESCo-CPAZT™™ v
PICHECKER v vy

<~
<
<
RN

INES

7
Svmionc 7 v v v
Svumoe-Wron v

T

Tuony
Uautozn
UGeCuTTER

\
R FEERR
3%
QR

oo

UKok
URerene
UTueax
Venians®
VeragsL®
VemoOoven
Wirdlao
Wiren v

A

\\\\\
QRDR
RPN

\\
eany vend s

RSN
NN
LN
N
RN
<
AN

https:// sv-comp.sosy-lab..org /2025/

Score Schema

Table 6: Scoring schema for SV-COMP 2025 (un-
changed from 2021)

DEAGLE v
EBF?
ESBMC-iner
ESBMC-KIND
GDarr v
GDaRT-LLVM?

GonLint v
GRAVES-CPAZ ™ |y v

HoRryix " v

JAVA-RANGER v

JBMC v v

IDARE? v v
Komy

Lazv-CSeq” v v

Morsa v

ENEN
ENEN

AN

ANAN

ENEN
ENEN

Syumioric
UAvToMIZER
UGEMCuTTER
UKok
URBFEREE "™
UTawax
VERIARS?
VERiABSL?

ENEN
AN

NAR RN

ENEN

ANEN

ANENENENN
AN N N N NN

ENEN
AN
ENEN

Table 4: Quantitative overview over all regular re-
sults; empty cells are used for opt-outs, "“" for first-
time participants, © for hors-concours participation,
and ™" for meta-verifiers

Participant

ConcurrencySafety

3175 tasks
= max. score 5733
FalsificationOverall

ReachSafety
‘max. score 17860
SoftwareSystems
1329 tasks

30758 tasks

max. score 10675

11268 tasks
ax. score 4079

MemSafety
NoOverflows
Termination
2328 tasks
JavaOverall
673 tasks
mix. Score 926

25
EH
="
EE

max. score

218
AProVE 2219

BRICK

Bubaak 6684 3355 -190 6572 1491 1697 5565 17768
Bubaak-SpLit 6053 3349 -189 6556 1122 1649 5562 16497
CoOpeRace ™ "

CPAchecker 10368 4892 1770 8777 1301 2178 6999 26786
cPV 7755

Dartagnan 3385

Deagle 4604

EmergenTheta 2106 -361 620

ESBMC-iner 2155

ESBMC-kind 8717 3158 2155 8668 1115 -1948 3741 18444
Goblint, 2427 2198 2448 8486 969 545 17266

Hornix™"

K
a
2
%
%
3
g
8
4

Korn
Mopsa 2807 2697 0 8491 0 2086 13521
Nacpa™e "= 10270 4887 1453 8843 1200 2127 6997 26131
Proton 3685

RacerF"*"

sv-sanitizers 861 1723

SVE-SVC™ 68717 -10965 -19469 0

Symbiotic 7097 4479 60 7704 1411 1822 6459 20691
Theta 3277 600 2275 170 T2

Thorn"*" 2519 208 286 536

UAutomizer 5666 3909 2003 11074 3334 651 4762 29710
UGemCutter 3144

UKojak 4935 2039 0 8878 0 300 3848 12872
UTaipan 6007 3711 2593 10736 0 288 4695 20244
GDart 627

Description
TFailure to compute verification result

Violation of property in program was correctly found
and a validator confirmed the result based on a witness
Violation reported but property holds (false alarm)
Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
Incorrect program reported as correct (wrong proof)

Reported result___ Points
UNKNOWN 0
FALSE correct +1

FALSE incorrect —16
TRUE correct +2

TRUE incorrect —32

Reference

Report

D. Beyer. State of the art in software verification and
witness validation: SV-COMP 2025. In Proc. TACAS,
LNCS . Springer, 2025

Acknowledgment

We thank the verification community for contributing

their tools to the evaluation.

IBMC 628
MLB 579
SWAT 508
oBMe® 1330 1885 819 7200 1199 2586 3581 9100
CPA-bam-bnb* -2370

CPA-bam-smg” 3249 4079

CPALockator” -4967

Crux® 2133 608

Cseq” -12720

DIVINE® 4620 502 351 0 0 T2 32 3680

EBF” 360

Frama-C-SV~ 1573

Gazer-Theta”

GDart-LLVM”

Graves-CPA” ™t 4041 -670 -820 4508

Infer” -96489 -8970 -76213 -32987

Lazy-CSeq® -15153

LF-checker” 396

Locksmith”

PeSCo-CPA"™S (269 1508 2435 16328
PIChecker” 459

Pinaka® 2448 958 922

PredatorHP” 4733

VeriAbs” 11012

VeriAbsL® 11224

VeriOover”

WitnessMap

COASTAL” -3960
JayHorn® 248
IDart” -1224
SPF” 181

CPV:

Software Systems

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

A Circuit-Based Program Verifier

Po-Chun Chien! and Nian-Ze Lee?"!

'LMU Munich 2National Taiwan University

po-chun.chien@sosy.ifi.lmu.de nzlee@ntu.edu.tw

HWMCC [2]
(Input: BTOR2 circuit)

ABC [5], AVR [10], ...

Applicable?

SV-COMP [1]
(Input: C program)

gitlab.com/sosy-lab/ TACAS 2024 [6]

software/cpv

Transition-rel.
encoder (KraTos2 [11])

‘Word-level checker
(AVR, Pono)

bit-blaster
(BTOR2AICGER)

Bit-level checker
(ABC, rRIC3)

Managed by COVERITEAM

TR-based
system (VMT [7])

‘Word-level circuit
(BTor2 [13])

Backend: Model Checking

AVR AVR

—|

KI [14] PDR [9]

IMC [12]

ABC AVR

BMC [4]

if BTOR2-to-AIGER translation succeeds

@ 3rd place in ReachSafety-Overall, including

1st in ReachSafety-BitVectors and -ECA

2nd in ReachSafety-Hardware and -ProductLines

A\ Y 4

1000

ReachSafety-ECA

e Sequential circuits can serve as an intermedi-
ate representation for software verification.
o Offer different encoding options.
o Leverage powerful word- and bit-level hard-
ware model checkers as backend.
o Perform competitively against established
verifiers in SV-COMP.
o Ongoing work:
— Support more verification properties (e.g.,
no-overflow and termination)
— Export correctness witnesses
— Apply circuit optimization to improve the
performance of verification

© 3rd in ReachSafety-Combinations and -Hardness

1000

S
Bubaak ===
CPAchecker ===
CPV st
ESBMC-kind
Goblint
Mopsa

+
—_
Symbiotic —&-—
Theta —>é—
UAutomizer =&

100 |-

Min. time in s

0 2000

4000 6000 8000 10000
‘Cumulative score
(1] %ey?’ D., Sdtrej-iek, J.: F;piovémgl\lftsci&\j{(gtzg;g V;er'_ [8] Eén, N., Mishchenko, A., Brayton, R.K.: Efficient im-
;ca I?I]‘IAaCITAS Yé)nelfls\l(gg '1;6;;“('2025)_ - plementation of property directed reachability. In: Proc.
roc. : FMCAD. pp. 125-134 (2011)
(2] B}:eri,‘ A, Frolegt(-s, Nz'é;zrelm‘erﬁ M. FII{\/?SRNSTG mo;ie; [9] Goel, A., Sakallah, K.: Model checking of Verilog RTL
((:28541;‘3 competition - Ame rroc. - Pp- (= using IC3 with syntax-guided abstraction. In: Proc.
!) o NFM. pp. 166-185 (2019)
3] E;ii)en’dA.’yTelgﬁl‘]Z}l{g{;’ 1K1'/’2WIlye;1;.lttiltguat!eSf:(')r1}‘Ic§i§.l 11\'/&;:1‘: [10] Goel, A., Sakallah, K.: AVR: Abstractly verifying reach-
: . . ? bility. In: Proc. TACAS. . 413-422. LNCS 12078
and Verification, Johannes Kepler University (2011) ?262103)] n roe pp
[4] giiereéA., gicrlnattié;’?., glalrcl'(e, E"i\fl" Strich'mag, O., Zthu, [11] Griggio, A., Jonas, M.: KrRATOS2: An SMT-based model
55’ 11(;‘1?4; (2[616’3)9 checking. vances in Lomputers checker for imperative programs. In: Proc. CAV. pp.
’ - 423-436 (2023
5] Braytor.;, R, MiShCh?nko‘, A ABQ: An ac:demic [12] McMillan(, KI{ Interpolation and SAT-based model
gﬁif)tff;g;eglg;g (V;;l%gatwn tool. In: Proc. CAV. pp. checking. In: Proc. CAV. pp. 1-13. LNCS 2725 (2003)
. Chien. i [13] Niemetz, A., Preiner, M., Wolf, C., Biere, A.: BTOR2,
) M ’ e . - g BTORMC, and BOOLECTOR 3.0. In: Proc. CAV. . b8T7—
gram verifier (competition contribution). In: Proc. 595 LNCSa‘IOQSl (2018) e Froe pp
TACAS (3). pp. 365-370. LNCS 14572 (2024) 14] Sh) M.. Singh. S.. Stal k. G.: Checki f
[7] Cimatti, A., Griggio, A., Tonetta, S.: The VMT-LIB (14] Sheeran, M., Singh, S., Stalmarck, G.: Checking safety
) i "d " glg i ,P SM:I‘ "CEUR Workeh properties using induction and a SAT-solver. In: Proc.
anguage and too’s. wm: Lroc. : orkshop FMCAD, pp. 127-144. LNCS 1954 (2000
Proceedings, vol. 3185, pp. 80-89 (2022) ' PP ()

Software Systems

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

SV-COMP Benchmark:
Verifying Intel TDX Module

Dirk Beyer!, Po-Chun Chien', Nian-Ze Lee*!, & Thomas Lemberger!

'LMU Munich 2National Taiwan University

Intel TDX Module managed access control,
leveraging MKTME and Secure EPT

Host VMM managed access
control, enhanced with MKTME

Legacy VM Legacy VM Trust Domain Trust Domain

Unmodified
Applications

Unmodified
Applications

Unmodified
Drivers

Unmodified

Drivers 5
Drivers

Drivers

Intel TDX Intel TDX

0s

0s
t

Intel TDX
Guest-Host Comm. Interface

0s
t

Intel TDX
Guest-Host Comm. Interface

0s
Intel TDX Module

Intel
ox Wl
’.‘n".i‘.ét’: (uses Intel TDX ISA)

Source: Fig.2-1 in Intel TDX Module v1.5 Base Arch. Spec. [2]

1 - name: tdh_mng_create__requirement__expected

2 target:

3 filename: formal/harness/tdh_mng_create_harness.c

4 method: tdh_mng_create__valid_entry

5 before_target:

6 - filename: formal/src/initialization.c

7 method: init_tdx_general

8 - filename: formal/src/initialization.c

9 method: init_vmm_dispatcher

10 - filename: formal/harness/tdh_mng_create_harness.c
11 method: tdh_mng_create__common_precond

12 after_target:

13 - filename: formal/harness/tdh_mng_create_harness.c
14 method: tdh_mng_create__common_postcond

15 properties:

16 - property_file: unreach-call.prp

17 expected_verdict: true

Havoc memory: by assigning a nondeterministic value to each byte

Havoc object: by nondeterministically initializing each field of the type
(if a field is a non-primitive type, recursively initialize it)
Verifier builtin: e.g., __CPROVER_havoc_object in CBMC

void _NONDET_struct_tdvps_t (tdvps_t* dest) {
_NONDET _custom_type (dest, sizeof (tdvps_t));
¥
void _NONDET_custom_type(void* base,
for (int i = 0; i < size; i++)
*((charx)base + i) = _NONDET_uint8t ();

unsigned int size) {

R S O N VY

Initialization by havocking memory

void _NONDET_struct_tdvps_s(struct tdvps_s *dest) {
_NONDET_struct_tdvps_ve_info_s (&((*dest).ve_info));
_NONDET_array_1D_unsigned_char (&((*dest).reserved_0),
/7 snipped

128);

}

void _NONDET_array_1D_unsigned_char (unsigned char (xdest)I[],
int dim0) {
for (int i

(xdest) [i]

© ® w4 e 9 e ow N =

0; i < dim0; i++)
= _NONDET_uchar ();

Initialization by havocking object

[1] Intel TDX Module v1.5 ABI Specification, https://www.intel.com/content/www/us/en/
content-details/795475/intel-tdx-module-vi-5-abi-specification.html, accessed: 2024-
05-01

[2] Intel Trust Domain Extensions, https://www.intel.com/content/www/us/en/developer/
tools/trust-domain-extensions/documentation.html, accessed: 2024-05-01

¢ TDs and VMM communicate through Application Binary Interfaces
e Goal: Verify TDX ABIs (implemented in C + assembly) adhere to the
specification under all inputs
Table 5.145: TDH.MNG.CREATE Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number and version, see 5.3.1

Bits Field Description

15:0 | Leaf Number Selects the SEAMCALL interface function

23:16 | Version Number | Selects the SEAMCALL interface function version

Must be 0

63:24 | Reserved Must be 0
RCX The physical address of a page where TDR will be created (HKID bits must be 0)
RDX Bits Name Description

15:0 | HKID The TD’s ephemeral private HKID

63:16 | Reserved Reserved: must be 0

Table 5.146: TDH.MNG.CREATE Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code — see 5.3.1
Other Unmodified
Example: Specification of ABI TDH.MNG.CREATE [1]

o Initialize global data and assume preconditions
« Mock access to externally defined data and model inline assembly
o Check postconditions

_STATIC_INLINE_ tdx_module_local_t *get_local_data(void) {
#ifdef TDXFV_NO_ASM
return &local_data_fv;
#else
uint64_t local_data_addr;
ASM("movq%%gs:%cllocal_datal, %0\n\t"
"=r"(local_data_addr)
[local_datal "i"(offsetof (
tdx_module_local_t, local_data_fast_ref_ptr)));
10 return (tdx_module_local_t *)local_data_addr;
1 #endif

LR R S R G SR R

9
| HJ

o 290 tasks from 16 host-side ABIs (TDH) and 5 guest-side ABIs (TDG)

o 4 HARNESSFORGE (gitlab.com/sosy-lab/software/harnessforge):
— Assembles single-file verification tasks from real-world C projects

— Slices off code irrelevant to verification tasks

o Next steps:

— Experiment with effect of different initialization strategies

— Develop more tooling to support harness generation (e.g., harness-
specific linter)

— Establish custom annotations for initializing complex types in SV-
COMP community

Intel TDX Module Verification tasks HARNESSFORGE

This work is supported by a research gift from Intel.

AProVE (KoAT + LoAT)

Automatic Termination Analysis of C Programs

Nils Lommen, Florian Frohn, and Jiirgen Giesl

Overview Exemplary C Program
e AProVE (KoAT + LoAT) [1] is a framework to analyze termination of C Programs _ _
e Programs are transformed into Integer Transition Systems (ITSs) Does the following program terminate?
e |TSs are analyzed by our tools KoAT [2] and LoAT [3]
extern int _nondet(void);
KoAT
3 3 Symbolic 3 Logy YES int main() {
c —— LLVM ——| Execution | int x = —nondEt();
Program |, | Program |, Graph ! (Non-) int y = _nondet();
! ! \'\) Termination -
| | by AProVE while(x < y) {
Path : Path : Concrete . i g:x,
inC [«&1— in LLVM &1— Execution = v
Program : Program : Path in SEG : }
I I | / return 0;
}
Figure 1: AProVE (KoAT + LoAT) for (Dis)proving Termination
LLVM Program Symbolic Execution Graph (SEG) & ITS
e C program is compiled into LLVM code using SEG represents all possible program runs, augmented with invariants:
Clang. e |ts nodes are abstract states that represent sets of actual program states
e LLVM fragment of the loop body: e SEG handles the heap, pointer arithmetic, and recursive data structures

e LLVM code is transformed automatically into an SEG
%10 = load %1

%11 = mul 3 %10 multiply x by 3 ITSs are a simple language for integer programs:
store %11, %1 store x

#

#

#
%12 = load %2 # load vy e Turing-complete formalism with to tiip=(z<vy)
%13 = mul 2 %13 # multiply y by 2 only integer variables over Z > @) = 3.z
store %13, %2 # store y n(y) = 2-y

#

br %6 jump to loop guard e SEG is transformed into ITS

load x

o ermination er Time Bounds o on-Termination and more
KoAT (T tion & Upper Time Bound LoAT (Non-T t d
e Automated complexity and termination analysis of ITSs Features Techniques
e Alternating modular inference of runtime and size bounds o)
o How often can a transition be executed? e non-termination ADCL DFS + acceleration
e Multiphase Linear Ranking Functions e Jower time bounds ABMC BFS + acceleration
— Use SMT-solver Z3 to infer well-founded relation o safety / unsafety TRL BFS + recurrence analysis
e TWN-Loops Non-term. via Acceleration Driven Clause Learning
< Reduce termination problem to SMT problem
Completeness for the class of so-called TWN-loops e Depth-first exploration of state space
e How /arge are the variables? e Applies acceleration when a loop is encountered
° Compute bounds for each change of a variable under-approximation of the loop's transitive closure

e Non-term. proofs as “by-product” of acceleration

— Over-approximate the number of changes by i
e Exploits redundancy to cut off infinite branches

runtime bounds
e Use runtime bounds and closed forms of loops

References

[1] Nils Lommen and Jiirgen Giesl. AProVE (KoAT + LoAT) Website: https://koat.verify.rwth-aachen.de/svcomp25.
[2] Nils Lommen, Eléanore Meyer, and Jiirgen Giesl. KoAT Website: https://koat.verify.rwth-aachen.de/.

[3] Florian Frohn and Jiirgen Giesl. LoOAT Website: https://loat-developers.github.io/LoAT/.

APVE R

Software Systems

@ CPAchecker

A Tool for Configurable Program Analysis

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

LMU

Daniel Baier, Dirk Beyer, Marek Jankola, Matthias Kettl, Marian Lingsch-Rosenfeld, and Philipp Wendler

Program

CPAV

OfpA0)

CPACHECKER is a modern and .
versatile framework for building ;ﬁlr-'
software-verification analyses from =
well-known concepts that match E
the user’s requirements. cpachecker.
sosy-lab.org

-1

Specification

More details can be found in our tutorial [1].

o Strategy selection chooses a parallel portfolio of analyses.
The parallel composition is denoted by the || symbol
e Support all properties and categories of C programs
e 1st place in the categories FualsificationOverall, ReachSafety,
MemorySafety, and SoftwareSystems
e 2nd place in the category Overall
o Only 7 wrong results out of 33353 tasks (0.02 %)
e New and improved analyses for:
— Reachability
— Memory safety
— Termination

Paper [1] available here

Algorithm Portfolio

T 1

1 Jf

For SV-COMP 2025, we used CPACHECKER 4.0 with strategy selection to
choose a parallel portfolio of analyses suitable for a given verification task.

@—L}[Specification CPA} [Function-Pointer CPA}

e

Composite CPA |- - - - [Predicate CPA [3]} [Value—Analysis CPA [6]] [Callstack CPA]

1
1
i [Interval CPA Automaton CPA

[Location CPA}

[Constraints CPAJ 6o o

1
:
1
SMG CPA !
1
1
1
1
1
1

1
i [Loop—Bound CPAJ

For witness validation in SV-COMP 2025, we used CPACHECKER 4.0 with
strategy selection to choose (based on the input) a mature analysis. More
details can be found in our competition contribution [5].

o Strategy selection chooses a mature analysis that is suitable for a
given validation task

e Support all witness types and formats, all properties for which
witnesses exist, and all categories of C programs

e 1st place in the categories MemorySafety, Termination,
and SoftwareSystems for violation witnesses 1.0

e 2nd place in all categories for correct-
ness witnesses 2.0, most categories for
correctness witnesses 1.0, and most
categories for violation witnesses 2.0

Paper [5] available here

f>| Memory Safety

iSMG—based (Symbolic execution || Value)

| CPACHECKER is an open-source

project, mainly developed by the

r>| No Data Races

IValue with memory-access-based POR

| Software and Computational Sys-

tems Lab at LMU Munich, and
is used and extended by interna-
tional associates from U Passau,

roperty?

f>| Termination

}Liveness—as—safety || Lasso-based analysis |

U Oldenburg, U Paderborn, ISP

RAS, TU Prague, TU Vienna,

Recursion

e

Reachability H

]—>| Predicate + Value analysis with BAM |

TU Darmstadt, and VERIMAG in

\->[Concurrency]—)lBDD-based analysis

Grenoble, along with several other
| universities and institutes.

\->[Loop-free

structure?

]—>| BMC || Predicate abstraction | [

*»[Single-Loop]—>| Sym. exec. || Value || Pred || DF || IMC |

We thank all contributors for
their work on CPACHECKER.

V

\>[Non-int. Data]—>| Value analysis || k-Induction

| 2N

Other

\,[

]—>| Sym. exec. || Value || Pred || DF || k-Ind

[1] Baier, D., Beyer, D., Chien, P.C., Jakobs, M.C., Jankola, M., Kettl, M., Lee, N.Z., Lem-

(2]

3]
4]

berger, T., Lingsch-Rosenfeld, M., Wachowitz, H., Wendler, P.: Software verification with
CPACHECKER 3.0: Tutorial and user guide. In: Proc. FM. pp. 543-570. LNCS 14934,
Springer (2024). https://doi.org/10.1007/978-3-031-71177-0__30

Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: Proc. CAV. pp. 622-640. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_ 42

Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verification.
J. Autom. Reasoning 60(3), 299-335 (2018). https://doi.org/10.1007/s10817-017-9432-6
Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model
checking revisited: Adoption to software verification. J. Autom. Rea-
soning 69 (2025). https://doi.org/10.1007/s10817-024-09702-9, preprint:

5

6

7

8

]

https://doi.org/10.48550/arXiv.2208.05046

Beyer, D., Lingsch-Rosenfeld, M.: CPACHECKER VALIDATOR 4.0 (competition contribution).
In: Proc. TACAS (3). LNCS 15698, Springer (2025)

Beyer, D., Loéwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE. pp. 146-162. LNCS 7793, Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1_11

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752-794 (2003).
https://doi.org/10.1145/876638.876643

Friedberger, K.: CPA-BAM: Block-abstraction memoization with value analysis and pred-
icate analysis (competition contribution). In: Proc. TACAS. pp. 912-915. LNCS 9636,
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_58

ftsr

00

Srg

Otheta

Modular, Highly Configurable,

Automatic Model Checker

COMPETITIONS

Since 2022
Concurrency focus
3 configurations

SV-COMP

Since 2023
Gold medal (array)

Planned
AIGER (bit-level)
BTOR2 (word-level)

1782

L ;|
MUEGYETEM

PROPERTIES PORTFOLIO
LTL properties }

(et Net props (deadlock safety)] Memory cleanup |

Dynamic Portfolio with
Algorithm Selection

Push-button verification

without FM expertise

Based on

knowledge and
. experience

TRANSITION SYSTEM ANALYSES CEGAR: COMBINED LAZY AND EAGER ABSTRACTION

Abstract
g Liveness-
to-Safety

Reverse

Lazy Abstractor

==

|

!

| |
[K-IND] [BMC] [IMC] [IC3]

[GSAT]

Reachability:
Invariants by construction (location, loop, function)

Termination:
Recurrence sets and ranking functions

Multithreading:
Invariants for weakly consistent software (WiP)

Supported solvers: z3, ELDARICA, GOLEM, . ..

Timed Automata
LLVM IR CAIGER

PLC

Statecharts

Petri Nets BTO

Witness Generation

Traceable witnesses: Proofs and counterexamples
Software: Correctness and violation witnesses
Hardware: Certificates (WiP)

CHC: Models and counterexamples
Statecharts: Traces

CONCURRENTWITNESS2TEST
Direct SMT encoding:

Witness Validation

Test generation:

termination

WITNESS GENERATION & VALIDATION

INDUSTRIAL PROJECTS

PLCVERIF:
verifying safety interlocks for
superconducting test benches

Railway interlocking
system verification

Verifying a steer-by-wire
system design

NASA JPL, IncQuery

Dynamic Verification Toolkit
(Model Checking as a Service)

COLLABORATIONS

y Summer sojourns
SoSy Lab Active collaboration

Seminar series
Integrated research
CERN PLCVERIF

Summer students

V&V in Future CPS m

VERIFICATION WITH HORN CLAUSES Language Frontend ORDERING CONSISTENCY

W(y2,3)
/lp?i\x,/i’ po.

W(z1,0)

AN /N

Wi 2) R |

po -~ '« o,
AN A Step-by-step refinement
» SAd Y ¥
" Rezs) W(zz,1)

(WSC (natively)] MCA (by modification)

« Happens-before partial orders

« Memory-Model-Aware Verification
« BMC via SMT encoding

« Supported decision procedures:

Integer Difference Logic

Thoroughly tested, mature integration
Minimal overhead, diverse OS-support

Broad solver support
New API features (ex: User Propagator)

ONGOING/PLANNED EXTENSIONS

Reimplement
successful
algorithms in THETA

PROBTHETA

Probabilistic
Model Checking in
THETA

Flexible: any solver, any version
Slower interaction

Extensions and Advanced
generalization of the liveness-checking
saturation algorithms

algorithm | (rlive, k-fair) j

Metasolver § ITP, PROOF

Online Better

SMT-solver-portfolio irclﬁecrpofants Wifjh
to handle bugs and EolivEr, cln

improve interpolants proofs instead of
unsat cores

[©3 PAPERS

E/JAVADoc

& DOCKER

RELEASE

- Critical Systems Research Group - https://ftsrg.mit.bme.hu

Software Systems

Table 2: Technologies and features that the test generators
used
0
o
&
2
n E
&0 o 8
S 2 £ = £
s E 2 £ g = g
P T £ 5 9 S g
§ 4 £ S % % % % £ gz § B
£ » O a @ g5 5 2 & £ O
S 4 7 5 = <) £ € B o
S 5 8 h < o = O %2 g 8 =
£ < 8 > > 2 8 5 2 3 £ a
© 2 © 9 = o o < % =]
7] = I [N =) =
E 2 o g8 = » R 9 Q o
= 8 g & S & & 9 8 £ g = %
2 £ 5 < 5 £ 8§ £ § 3 8 s 2 %
5 @q g g 2 =& £ 8§ € 5 <© & ¢
5 4 22 8B % ZE Y
—_ = —_ =
Tester < E A 638 2de 0 REE g E
CeTFUZZ? v v
COVERITEST v v v v v v v 7
ESBMC-INCR v 7/ 4
ESBMC-KIND v /7 v v 7/
FDSE v o/ v o/
F1zzer v
FUSEBMC v v o/ v v
FUSEBMC-AI? v v /7 v
HYBRIDTIGER? v v v v
KLEEF 4 v /7 v v
KLEE? v v v
owr? v v v v
PRTEST v v
Rizzer? v v
SIKRAKEN " v
SYMBIOTIC v v v v v v
TRACERX v v v 4
TRACERX-WP
UTESTGEN v v
WASP-C? v v o/

Table 3: Quantitative overview over all results

:

& g

g oo g2 i

M2 A =2

o 5= e
Participant 39 33 S5

o3 0= o=
Cetfuzz? 323 2524 2906
CoVeriTest 552 4959 5DR=
ESBMC-incr 679 4380 5591
ESBMC-kind 680 4323 5565
FDSE 729 5468 6435
Fizzer 736 5429 6446
FuSeBMC 994 5656 7763
FuSeBMC-AT? 853 4077 6228
HybridTiger? 438 3866 4193
KLEE? 804 3065 5434
KLEEF 969 5734 7692
Owi? 281 2462 2677
PRTest 211 3191 2764
Rizzer? 608
Sikraken "®" 2469
Symbiotic 743 4207 5793
TracerX 390 3327 3667
TracerX-WP 349 3275 3447
UTestGen 439 4393 4492
WASP-C? 554 2740 4094

Reference

D. Beyer. Automatic testing of C programs: Test-Comp 2025. Springer,
2025

Funding
This project was funded in part by the Deutsche Forschungsgemein-
schaft (DFG) — 418257054 (Coop).

7th Competition
on Software Testing

Dirk Beyer

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

LMU

Participants

Table 1: Competition candidates with tool references and representing jury members;
indicates first-time participants

new

KLEEF
KLEE?
Oowr?
PRTEST
RizzeR?
SIKRAKEN "¢
SYMBIOTIC
TRACERX
TRACERX-WP
UTESTGEN
WASP-C?
TesTCov

Tester License Jury member Affiliation

CeTFUzZ? Apache - —

CoVeriTest Apache M.-C. Jakobs LMU Munich, Germany
ESBMC-incr Apache C. Wei U. of Manchester, UK

ESBMC-kinp Apache C. Wei U. of Manchester, UK

FDSE Apache Z. Chen National U. Defense Techn., China
FizzER Zlib M. Trtik Masaryk U., Brno, Czechia
FuSEBMC MIT K. Alshmrany U. of Manchester, UK and

FuSEBMC-AT? MIT
HysrIDTIGER? Apache

NCSA
NCSA
AGPL
Apache
Zlib
LGPL
MIT
Apache
Apache
LGPL
Apache
Apache

Inst. Public Admin., Saudi Arabia

A. Misonizhnik Independent Researcher, Neutral

T. Lemberger LMU Munich, Germany

South East Technological U., Ireland

C. Meudec

M. Jonés Masaryk U., Brno, Czechia

J. Jaffar National U. of Singapore, Singapore
J. Jaffar National U. of Singapore, Singapore
M. Barth LMU Munich, Germany

M. Kettl LMU Munich, Germany

Figure 1: Quantile functions for category Overall.

cetfuzz -+

CoVeriTest —¥—
ESBMC-incr
ESBMC-kind

FDSE —%—

Fizzer —&—

FuSeBMC —=—

FuSeBMC-AL v

HybridTiger 0

KLEE ™

KLEEF —H—

Owi =X

PRTest —&—

Symbiotic —&—

TracerX —@—

TracerX-WP —A—

UTestGen —+—

WASP-C =@

10000 -

8000

6000

4000 -

Min. number of test tasks

2000

0 1000

2000

tors

Evaluated test generat

https://test-comp.sosy-
lab.org/2025/

out

7l

A

L
4000

3000 7000

Cumulative score

Table 4: Overview of the top-three test generators for
each category (measurement values for CPU time in hours,
rounded to two significant digits)

Rank Tester Score CPU
Time

Cover-Error

1 FuSeBMC 994 75

2 KLEEF 969 9.5

3 SYMBIOTIC 743 5.5

Cover-Branches

1 KLEEF 5734 1500

2 FUSEBMC 5656 2500

3 FDSE 5468 2200

Owverall

1 FuSeBMC 7763 2600

2 KLEEF 7692 1500

3 F1zzER 6446 2100

_ CoVeriTest .

Software Systems Cooperative Verifier-Based Testing I—Mu MONCHEN

Marie-Christine Jakobs (m.jakobs@lmu.de)

coverage property

N

defines cooperative testing
== S I’e
£ NP
‘69/% < \e(]
046/ covered gOQ/
e _, . s
e init. " program”. init .

o

A

:l Predicate analysis [2]
tp

Random testing Value analysis [1]
ty

I
I
I
I
I
I
test case,
I
I
I
I
]
I

original and mutated g
-* PR Tades o Mutation - - - - - - - testease " T T T ‘

Implemented in CPA/ https://cpachecker.sosy-lab.org/

done

D. Beyer, M.-C. Jakobs, CoVeriTest:
Cooperative Verifier-Based Testing,
FASE, Springer, 2019.

Feasibility

no counterexampls

spurious
Abstraction Abstraction
computation refinement

test Property

goals encoding
Property
adaption

g €
g ¢ :n‘ctocrel(?

test goals

Idea
Per test case create 5 mutated test cases » Reward past behavior of analysis
Generation of 10 test cases with random inputs using the following mutation per input » Adaption based on relative progress p;,
i.e., goals covered by analysis in round 7 in
relation to all goals covered in round 4
replacement with = only adapt if new goals covered

program @

D. Beyer, M.-C. Jakobs, Cooperative
verifier-based testing with CoVeriTest,
STTT 23(3), 2021.

o</ aput> M.-C. Jakobs, CoVeriTest with Dynamic
mpue b npue> Partitioning of the Iteration Time Limit
(Competition Contribution), FASE,

Springer, 2020.

<testcase>
<input>...</input>

random length

. between 0 and 20 1% 2o, 1L
<input>...</input> chween U an q - ; Pi

same random negate L imit;

</testcase> new — t
value value congstant value limit; 105 + —5¢ pp— *80s

12.5%,/75%| 12.5% limity limitp
Each input is a a random integer from [0, 20] e
) INT KIIN INT MAX Initial limits

e Value analysis 20's
o Predicate analysis 80s

[1] D. Beyer and S. Léwe. Explicit-state software model checking based on CEGAR and interpolation. In Proc. FASE, LNCS 7793, pages 146-162. Springer, 2013.
[2] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with adjustable-block encoding. In Proc. FMCAD, pages 189-197. FMCAD, 2010.

TracerX: Enhancing Dynamic Symbolic Execution with Weakest Precondition &
Deletion Interpolation

National University
of Singapore
{arpita, joxan, xiaolyl@comp.nus.edu.sg

, sajjadrs|

Arpita Dutta!, Rasool Maghareh?, Joxan Jaffar®, Sangharatna Godboley*, and Xiao Liang Yu®

gmail.com?, sanghu@nitw.ac.in*

School of Computing, National University of Singapore, Singapore!*, Lemurian Labs, Toronto, Canada? National Institute of Technology Warangal, India*

TracerX Framework

Approximation of Weakest Precondition

c LLVM IR
PP KLEE SMT Solver 9@

ObjC i Test Cases

TracerX Interpolant > |/~/i
Generation Engine

Statistics

Clang

Annotations ———»|

Figure 1. The overall architecture of TracerX

Highlights

= TracerX is Dynamic Symbolic Executor (DSE) which is built upon KLEE [1].

= The major advantage of DSE is its path-by-path exploration of the program execution space.
However, this often leads to the path explosion problem.

= To address this issue, a method of abstraction learning has been used. The key step here is the
computation of an interpolant to represent the learned abstraction [2].

= We use two different approaches of interpolant generation viz., 1. Deletion Interpolation [3] and 2.
Weakest Precondition (WP) Interpolation [4]

= Deletion Interpolation (TracerX-Del) is our more stable and mature system and is briefly discussed
in [3].

= Here, we present the Weakest Precondition (WP) Interpolation approach for TracerX, i.e.,
TracerX-WP.

From KLEE (No Interpolation) to TracerX (With Interpolation)

= Forward Symbolic Execution to find feasible paths (Similar to KLEE).
= Intermediate execution states preserved (Unlike KLEE).

= Half interpolant aka (PATH Interpolants) are generated during backward tracking and Full
interpolants aka (TREE Interpolants) are generated by merging the half interpolants.

= Full interpolants used for subsumption at similar program points.
= TracerX uses information from already traversed subtree to prune other subtrees.

(a)

Figure 2. Exploration of Symbolic Execution Tree in Non-pruning DSE vs. Pruning DSE

Symbolic Execution Tree with Interpolation

Consider this program:

x = 0;

if (b1) x += 3 else x += 2
if (b2) x += 5 else x +=
if (b3) x += 9 else x += 14
assert(x <= 24)

~

= DFS traversal.
= Without interpolation: The full tree is
traversed.
= With interpolation:
1. (8b) context contains « = 10. It is subsumed with the
tree interpolant from (8a): « < 10.
2. (5b) context contains x = 2. Subsumed with the tree
interpolant from (5a): = < 3.
3. Big subtree traversal is avoided.

assert(z <= 24)

Interpolation: Weakest Precondition

= |deal interpolant is the weakest precondition (WP) of the target. Unfortunately, WP is intractable
to compute, which means it is difficult or impossible to find an exact solution.

= For example, in the above code snippet: assume (not(b1A=b2A-b3)).

= Hence, the WP before the first if-statement is:
WPis: b1 — (-2 Ab3Az <T)V (b2Ax < 4)
bl — <3

= Essentially, WP is exponentially disjunctive. This means that any one of the conditions can be
satisfied for the target to be reached. (As shown here)

= One way to approximate WP is to use a conjunctive approximation, which involves expressing the
WP as a conjunction of simpler conditions (Challenge is to obtain a conjunctive approximation).

ASE, Hamilton, Canada

A Path is a sequence of assignments and assume instructions:

1. Interpolant of Assignment instruction:

= wp(inst,w) = - - inverse transition of inst over w
= Implemented at LLVM IR level: LD/ST, add, sub, cmp, cast, GEP, etc.
= eg w:x<15andinst : x =z+2, then wp(inst,w): z < 13

2. Interpolant of Assume instruction (C is incoming Context):
{C} assume(B) {w}
= WP Approximation: find C' to replace C
= ABDUCTION PROBLEM !!!

Following algorithm is the heart of TracerX:

1. We compute finest partition so that var(C;) * var(Cj) s.t. i # j: {Cy + Cox Oz % .. % Cp} - assume(B)
{wy * wo * w3 * ... x wp} (x is as in separation logic).

2. Bunch Cj into three:

= Target independent: The C; which are separate from B and w.
Action: Replace C; with true, i.e. remove C;.
= Guard independent: Consider C; = C; s.t. C; * B; and, wy; = wj s.t. B x wj.
Action: Replace Cy; by wy;
= Remainder of the C;: We do not capture exact WP for this group.
eg. {z==5} assumelr >z—2) {r >0} (Here, z > 2isthe WP)
Action: No change to C}, i.e. keep C;.

KLEE [1] v/s TracerX-Del [3] v/s TracerX-WP [4]

Consider this program; here, function £ (N), returns the sum of the first N natural numbers.

int counter=0; tes
char input[N+1]; 33
klee_make_symbolic(input, (N+1)* 3.0 ~— TracerX (Del/WP)
sizeof (char),"input"); 2,5
for (int i=0;i<=N; i++){ <
if (input [i]==B) gz.o
counter=counter+1; %1.5
else) S 10
counter+=i;
} 0.5
klee_assert(counter!=f(N)+1); 0.0
20 20 60 80 100
Value of N

= KLEE suffers from path explosion and hits the
timeout for N=17.

= Both TracerX-Del and TracerX-WP scale up to
N=50 [timeout=600 secs for each tool]

= Clear gap in the number of subsumed paths
between TracerX-Del and TracerX-WP.

= TracerX-WP generates better interpolants than
TracerX-Del for subsumption.

= Reason: TracerX-Del generates interpolants as a
subset of the incoming context whereas
TracerX-WP generates interpolants from the

weakest precondition of a path. 5 15 20 25 30
Value of N

w

w

Subsumed Paths
&

N

-

Experimental Results

Data set: All C-programs from RERS-2012 Challenge [6].
= Total targets: 1159
= All three systems KLEE [1], CBMC [5] and TracerX-WP [4] are run for 3600 seconds
Observations:
1. TracerX-WP able to detect 348 targets, while KLEE and CBMC are detected 245 and 117 targets
respectively.
2. All the targets reached by TracerX-WP are super set of targets covered by CBMC and KLEE.
3. TracerX-WP is 29.59x faster than KLEE and 66.37x faster than CBMC.

mBugs Detected MTimeout W Times faster

-% &8 o8 EE
AR EEEE]

KLEE caie Tracerx WP ‘Speedup over KLEE Spoedup over CBMC

Figure 3. Targets detected by the tools Figure 4. Speedup obtained by TracerX-WP

References

[1] C. Cadar et al. Klee: Unassisted and automatic generation of high-coverage tests for complex
systems programs. In: OSDI, 2008.

[2] J. Jaffar et al. TRACER: A symbolic execution tool for verification. In: CAV, 2012.

[3] J. Jaffar et al. TracerX: Dynamic symbolic execution with interpolation (competition contribution).
In: FASE, 2020.

[4] A. Dutta et al. TracerX: Pruning Dynamic Symbolic Execution with Deletion and Weakest
Precondition Interpolation (competition contribution). In: FASE, 2024.

[5] D. Kroening D et al. CBMC-C Bounded Model Checker. In: TACAS 2014.
[6] http://rers-challenge.org/

7th Comp

on on Software Testing (Te

The content is licensed under CC-BY-4.0, © ETAPS e. V., 2025

