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ByteBack: Deductive Verification
at the Level of JVMBytecode
Marco Paganoni · Carlo A. Furia

Software Institute, USI Lugano, Switzerland

ByteBack: Deductive Verification
at the Level of JVMBytecode
Marco Paganoni · Carlo A. Furia

Software Institute, USI Lugano, Switzerland

Deductive Verification

@Require ( f o r a l l j : i n t • xs [ j ] ̸= 2)
@Ensure ( return ≥ 0)
pub l i c i n t onesMinusTwos ( i n t [ ] xs ) {

i n t r = 0 ;
f o r ( i n t i = 0 ; i < xs . length ; ++i ) {

invariant (r ≥ 0)
switch ( xs [ i ] ) {
case 1 : r += 1 ; break ;
case 2 : r −= 1 ;
}

}
return r ;

}

Verifier

Ëé

Supported Java Features

Java Support
Feature Version KeY OpenJML ByteBack

Generic classes 5 U Ë Ë
Enhanced for loop 5 Ë Ë Ë
Variable arguments 5 Ë é Ë
Generic type inference 7 é é Ë
Try-with-resources block 7 é é Ë
Multi-catch block 7 Ë é Ë
Default methods 8 Ë Ë Ë
Local type inference 10 é é Ë
switch expressions 12 é é Ë
yield in switch expressions 13 é é Ë
instanceof pattern matching 14 é é Ë
· · ·

ByteBack’s Architecture

source code

Example.java

bytecode

example.jar

encoding Boogie code

ReadInto.bpl

compiler

javac, scalac, . . .
Soot Boogie

BBLib

bblib.jar

Scene attaching

Vimp
code

transform

propagation

Ëé
ByteBack

https://github.com/atom-sw/byteback

BBlib: Specification in ByteBack

@Require ( "no_twos" ) / / @require ( f o r a l l j : i n t • xs [ j ] ̸= 2)
@Ensure ( " nonnegative " ) / / @ensure ( return ≥ 0)
publ i c i n t onesMinusTwos ( i n t . . . xs ) {

var r = 0;
for ( var x : xs ) {

invariant ( gte ( r , 0 ) ) ; / / @invariant ( r ≥ 0)
r += switch ( x ) {
case 1 −> 1;
case 2 −> −1;
defau l t −> 0;
} ;

}
return r ;

}

@Predicate publ i c boolean no_twos ( i n t [ ] xs )
{ i n t j = Binding . integer ( ) ; return f o r a l l ( j , neq ( xs [j ] , 2 ) ) ; }

@Predicate publ i c boolean nonnegative ( i n t [ ] xs , i n t r )
{ return gte ( r , 0 ) ; }

Experimentswith ByteBack

120 Verified Programs
Language Count Size (LOC)
Java 8 58 8171
Java 17 23 6489
Scala 2.3 21 2221
Kotlin 1.8 18 2303

Benchmarks
Size (LOC) Time (s)

Source Boogie Encoding Verification
Total 1984 1031874 66.3 104.7
Average 159 8598 552.7 872.5



3. Behind the Scenes
Verification through formal methods, and with an
automatically generated model of the human, requires:

Creation of a metamodel to formalise the structure of
RoboScene
Definition of formal, mathematical, semantics for
RoboScene
Development of a tool to automatically translate from
RoboScene into a mathematical notation (CSP)
Connection of the human, software and hardware
models

Provide communication points
between software, hardware and
human factors engineers

1. Robotic System
For any robotic system, to perform
formal verification, we need to:

Model the software
Model the hardware

———

2. Human
Interaction

No system is currently fully autonomous, so, to
model the system, we need to model any
expected human interaction. 

Our notation, RoboScene:
Applicable to any use case
Features to capture decision making
Understandable for various stakeholders in
the robotics development lifecycle
Formal semantics: timed, process algebraic

________
The Pilot requests the battery status of the
drone from the Handheld. The Handheld returns
it to the Pilot who then, after the passage of non-
deterministic time, decides if the status is ok.

Modelling and verification of robotic systems lessens the risk of a
critical failure
Desirable properties of a robotic system may depend on assumptions
about the behaviour of humans 
Verification of properties of such robotic systems requires a model of
expected human behaviour
Existing techniques for this modelling:

need expert knowledge 
don't cover the whole system: human, software, hardware,
scenario
don’t support formal verification

Any approach should facilitate cross-discipline communication,
without the loss of precision

We demonstrate here part of 
our search-and-rescue (SAR) 
example where a Pilot 
monitors Drone flight 
through a Handheld device

Proving properties about a system allows us
to test the correctness of its design. These
properties could be time dependent, such as
the one defined here, or flow dependent like:

After the Pilot requests the battery status, no
less than 20 seconds passes before successful
completion of the request.

Our approach enables you to:
Prove properties of the system
dependent on human interaction
Mathematically prove these properties
Receive counterexamples in the case of
property failures (FDR)

______
Properties of the SAR example are derived
from human factors models

Pass
Automatic generation of artefacts: simulation, tests, proof of properties
Production of rigorous evidence of system properties, useful in safety cases

User Needs Analysis
Conducting (n=14) industry interviews on HRI design approaches identified:

C

A

B

D

5. Now What?

14 standards
21 human traits

4. Property

Holly Hendry, Ana Cavalcanti,
Cade McCall, Mark Chattington

Human-Robot Interaction in the Design and Verification of Robotic Systems 

robostar.cs.york.ac.uk 

 Problem Space Approach
The steps of our design and verification approach:

holly.hendry@york.ac.uk

that be an expectation on the software, hardware,
        or human

Can be used to inform the design of the
system through highlighting failure cases

26 processes
20 tools Fail

Indication of an issue within one of the models, whether

Testing the system complies with the property we have
defined results in one of two outcomes:

No common approach or
standard



Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Learning
Programs to Graph Execution

Raffi Khatchadourian1,2 Tatiana Castro Vélez2 Mehdi Bagherzadeh3 Nan Jia2 Anita Raja1,2

1CUNY Hunter College, USA (ponder@hunter.cuny.edu) 2CUNY Graduate Center, USA 3Oakland University, USA

Introduction

As Deep Learning (DL) datasets grow,
efficiency becomes essential to support
responsiveness [16].

Traditionally, DL frameworks embraced
deferred execution-style DL code for fast
execution.

Hybrid approaches [2, 8, 13] execute
imperative DL programs quickly.

Hybridization

Figure: Screenshot of the Hybridize Functions refactoring
preview wizard.

In TensorFlow [1], AutoGraph [13] can
enhance run-time performance by decorating
(annotating) appropriate Python function(s)
with @tf.function (Fig. 1).

Problems with Hybrid Approaches

Require non-trivial metadata [12].

Exhibit limitations and known issues with
native program constructs [9].

Are difficult to use correctly and efficiently
(e.g., avoiding side-effects) [4].

Developers manually specifying which
functions are converted.

Insight

Although imperative DL code typically
executes sequentially, hybridization resembles
parallelizing traditional sequential code.

Automated Tool

We design and implement a fully automated,
open-source refactoring tool named
Hybridize Functions [11] that transforms
otherwise eagerly-executed imperative
(Python) DL code for enhanced performance.

Contributions

Refactoring approach for automatically
converting imperative DL code to graphs.

Novel tensor analysis for imperative DL.

Fully automated, open-source tool
implemented as a PyDev [15] Eclipse [7]
IDE plug-in that integrates static analyses
from WALA [14] and Ariadne [6].

Architecture & Dependencies

Figure: Overall architecture.

Eclipse is leveraged for its existing, well
documented and integrated refactoring
framework and test engine [3], including
transformation APIs (e.g., ASTRewrite),
refactoring preview pane (Fig. 1),
precondition checking (e.g.,
Refactoring.

checkInitialConditions(),
Refactoring.

checkFinalPreconditions()), and
refactoring testing (e.g.,
RefactoringTest).

PyDev used for efficient program entity
indexing, extensive refactoring support [3],
and that it is completely open-source for
all Python development.

WALA is used for static analyses, such as
ModRef, for which we built our side-effect
analysis upon.

Ariadne, which depends on WALA, is used
for its Python and tensor analysis,
including type inference and (TensorFlow)
library modeling.

Challenges Addressed

Reworked much of the existing Java (JDT)
refactoring tooling to work with Python.

Integrated Ariadne with PyDev due to its
excellent and long-lived refactoring support
for Python, including refactoring preview
pane, element GUI selection, and
refactoring undo history.

Augmented Ariadne to analyze imperative
Deep Learning (Python) code by vastly
expanding the XML summaries to support
a wide variety of popular TensorFlow 2
APIs.

Added support for Python constructs
commonly used in modern imperative DL
programs.

Correlated varying intermediate
representations (IRs) with the original
Python source code.

Modernizing Ariadne: New Enhancements

Python module packages.

Wild card imports.

Intra-package references (relative imports;
from .. import X).

Package initialization scripts.

Automatic unit test entry points discovery.

Non-scalar tensor dataset [10] iteration.

Modeling of additional libraries.

Static and class methods analysis.

Analysis of custom decorators.

Callable object (functor) analysis (used in
Keras).

Evaluation Summary

We applied our approach to 19 open-source
Python imperative DL programs of varying
size and domain, with thousands of source
lines of code ranging from 0.12 to 36.72.

Our tool considered 766 Python functions,
automatically refactoring 42.56% despite
being highly conservative.

During a run-time performance evaluation,
we measured an average relative model
training speedup of 2.16 (memory
consumption measurement pending).

Differences in model accuracy and loss
before and after refactoring were negligible.

Conclusion

Open-source, automated refactoring PyDev
Eclipse plug-in, Hybridize Functions,
assists developers with writing optimal
imperative DL Python code.

Integrates an Eclipse refactoring with
WALA Ariadne Python static analyses.

Future Work

Explore incorporating advanced
container-based analyses.

Automatically split functions.
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SYMBOLIC STATE PARTITIONING FOR REINFORCEMENT LEARNING
Mohsen Ghaffari1 , Mahsa Varshosaz1 , Einar Broch Johnsen2 , Andrzej Wąsowski1
1 IT-University of Copenhagen, Copenhagen, Denmark
2 Univesity of Oslo, Oslo, Norway Talk: FASE, Tuesday, 11:00

Full Paper

Problem: How to partition the state space for training an agent efficiently using Tabular Reinforcement Learning?

State of the art: Tile coding

The state-of-the-art partitioning methods are not
adaptive to the structure of the state space.

Contribution of this paper: SymPar

Capturing nonlinear dependencies between state
components, and finding narrow parts.

SymPar

•The environment is modeled as a com-
puter program that implements a single-
step transition function, producing the
next state and the corresponding reward,
•For each concrete action, the environ-
ment simulator is symbolically executed
to generate a set of partitions over the
state space. SymPar then computes the
intersection of these partitions as its final
output,
•Symbolic Execution extends normal ex-
ecution by running the operators of a lan-
guage using symbolic variables and pro-
ducing symbolic formulas (PC) as output,
•Symbolic execution computes semantic
based partition.

Simulator
Code

Symbolic
Executor

a1,a2, . . . , am
PCa1

PCa2

PCa3

PCa4

PCa5

Experiments Results

How does granularity of partition affect learning performance?
Increasing the search depth of the symbolic executor leads to finer-
grained partitions produced by SymPar. This higher granularity en-
hances learning performance, as reflected in improved accumulated
rewards.
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Howdoes SymPar scalewith state space sizes?
The number of partitions generated by Sym-
Par remains constant as the state space grows,
demonstrating scalability with respect to state
space size.

|S| |S| |S| |S| |S| |S|

Simple
Maze

10×10 33
Wumpus
World

64×64 73
Navigation

10×10 51
102×102 33 102×102 73 102×102 51
103×103 33 103×103 73 103×103 51
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Fair Quantitative Games
Ashwani Anand, Satya Prakash Nayak, Ritam Raha, Irmak Sağlam, and Anne-Kathrin Schmuck

Fairness in Synthesis

0 blocks 1 block

Can we guarantee the robot will put 
a block at the mark, and remove it, 

infinitely often? 

0 blocks 1 block

-1

0

+1

0

Can we guarantee the robot will put a 
block at the mark, and remove it, infinitely 

often,
without the battery running out, 

for some initial value of the battery? 

Fairness assumptions eliminate unrealistic scenarios.

Fairness: Whenever the source node of a dashed edge 
is taken infinitely often, the dashed edge is also taken 
infinitely often.

Fairness is easy on qualitative games

Qualitative
Safety, Parity, Rabin…

Quantitative
Energy, Mean-payoff

What about fairness on quantitative games?

Can be solved in same time 
complexity as the original game
[1, 2]

Fairness on system can be solved in 
super-exponential time using current 
approaches, whereas there is no 
known approach for fairness on 
environment.

Determined?
Complexity

(Pseudopolynomial)
Reduction

1-fair MP Yes To MP on 6n nodes and max absolute weight 

2-fair MP Yes To MP on 6n nodes and max absolute weight 

1-fair Energy Yes To Energy on 8n nodes and max absolute weight 

2-fair Energy No
Player 1 winning region reduces to that of an energy on the same 
graph, Player 2 winning region reduces to that of 2-fair MP game 

on the same graph

Fairness in Quantitative Games

2-Fair Games: Player 2 nodes have fair outgoing edges.

Does there exist a strategy 𝜎 such that, 

long run average payoff of every 𝜎-play 
is non-negative AND the play is fair?

1-Fair Mean Payoff

A play 𝜌 is fair iff for every node 𝑣 ∈ 𝑖𝑛𝑓(𝜌) that has fair (dashed) outgoing edges 
𝐸𝑓(𝑣) ≠ ∅  ,𝐸𝑓(𝑣) ⊆ 𝑖𝑛𝑓(𝜌).

1-Fair Games: Player 1 nodes have fair outgoing edges.

Does there exist an initial credit c and a 
strategy 𝜎 such that, total energy level along 

every 𝜎-play stays non-negative AND the play 
is fair?

1-Fair Energy

Does there exist a strategy 𝜎 such that, 

long run average payoff of every 𝜎-play 
is non-negative OR the play is NOT fair?

2-Fair Mean Payoff

Does there exist an initial credit c and a 
strategy 𝜎 such that, total energy level along a 
play stays non-negative OR the play is NOT 
fair?

2-Fair Energy

For each fair node 𝑣 in 

the 1-fair MP game 

𝐸𝑓(𝑣)𝐸(𝑣)

𝑣

replace 𝑣 with the following 𝑣-gadget

𝐸𝑓(𝑣) 𝐸(𝑣)

0 0

0𝑛𝑊 + 1 −𝑛2𝑊 − 1

𝑣 escape branch for Player 1 
(the escape branch) 

fairness-forced escape branch for Player 2
(the fair branch) 

simulation 
branch

Gadgets for Reducing Fair Games to Standard games

𝑂(𝑛3𝑚𝑊)

𝑂(𝑛3𝑚𝑊)

𝑂(𝑛4𝑚𝑊)

𝑂(𝑛3𝑚𝑊)

[1] Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A., Soudjani, S.: Fast symbolic
algorithms for omega-regular games under strong transition fairness. TACAS’22

[2] Hausmann, D., Piterman, N., Saglam, I., Schmuck, A.: Fair ømega-regular games. FoSSaCS’24

Contributions

System 
(Player 1)

Environment 
(Player 2) 

2-fair energy games are not 

determined

A node is won by Player 1 if there 
exists a Player 1 strategy σ and a credit 
𝑐 s.t. every σ − play is won by Player 1 

for credit 𝑐.

A node is won by Player 2 if there 
exists a Player 2 strategy π s.t. every 
π − play’s total payoff goes below −𝑐

for every credit 𝑐.
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Fixed Point Certificates for Reachability and
Expected Rewards in MDPs
Krishnendu Chatterjee, Maximilian Weininger, Tim Quatmann, Tobias Winkler, Maximilian Schäffeler, and Daniel Zilken

What even are Certificates?

MDP
+

Property

Model Checker
w/

Implementation Errors/
Floating Point Rounding

Result
+

Certificate

Formally verified certificate checker

Easy-to-check proofs of the verification results!

MDPs (Markov decision processes)

s

s

The Model for Systems
with Nondeterminism:

−→ vs 99K
and Probabilities:

1
3→ +

1
3→ +

1
3→ = 1−→

s

: Target States

: Sink States

1
3

1
3

1
3

Let’s Play! - The Reachability Game

Dmin = ∞

Dmax = ∞

Dmax < ∞

Dmin < ∞

Pmin = 0

Pmin > 0

Pmax > 0

Pmax = 0

(1)(2)

Connect
wisely

Hints
-Consider opt = min and

opt = max separately
-Apply Dopt to each state

until you reach a fixed point

Rules

Dopt =




0 if s ∈
1 + opt

a∈Act(s)

min
s′∈Post(s,a)

r(s′) ow.

(1) Compute the Distance Operator (^^) for each state
(2) Apply the following Lemma:

Dopt = ∞ ⇐⇒ Popt = 0

Experimental Evaluation
• Interval Iteration: No Cert vs. Cert
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Scalability
• Certification Time vs. #states
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e
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Conclusion
• We developed fixed point certifi-

cates as a new standard for Certi-
fied Model Checking

• We compute certificates with ratio-
nal value vectors and check them
with exact, arbitrary precision
arithmetic

• Scalable to ≈ 106 states with a
runtime within ≈ 30 sec.

• Soundness formalized in Is-
abelle/HOL

• CT: daniel.zilken@cs.rwth-aachen.de



GPU accelerated probabilistic model checking

Jan Heemstra (j.h.heemstra@tue.nl), Anton Wijs (a.j.wijs@tue.nl)

Objectives

• Perform probabilistic model checking entirely on a GPU.

•Previous achievements with the GPUexplore model checker:

–Use hardware acceleration to speed process up [4].

–Verify specification adherence with LTL formulae [3].

•New: compute the probability of invalid system behavior with PCTL
formulae [1, 2].

Matrix construction

•Goal: construct (sparse) transition matrix on a GPU.

• Input: explored states are chaotically distributed over hash table.

• Sparse matrix is stored in memory using CSR format.

0

1

2

3

4

5

0 1 2 3 4 5

0.90.1

0.4 0.6

1.0

0.1 0.80.1

1.0

Row
Offsets 0 2 4 5 8 8 9

Column
Indices 0 3 2 3 0 1 4 5 1

0 1 2 3 4 5

Values 0.1 0.9 0.4 0.6 1.0

6

0.1 0.1 0.8 1.0

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

•Memory usage is main constraint.

•On-chip (a.k.a. shared) memory is fast and low latency.

• Two prefix sums are needed: for row offsets and column indices.

• Interweaved prefix sum optimizing both memory access latency and usage.

+

global[0] global[1] global[2]

global[0] global[1] global[2]

+

+

+

Global[0] Global[1] Global[2]

Global[0] Global[1] Global[2]

Chunk 0 Chunk 1 Chunk 2

+

+

Global matrix

Chunk 0 Chunk 1 Chunk 2

Position in global hash table

Tim
e

Kernel 1

Kernel 2

Kernel 3

Program flow

Data flow

•After matrix construction, the CUSPARSE library is used to perform 
matrix-vector multiplications, for the verification of PCTL formulae.

•Up to 855× faster than Storm, fastest on larger models.
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Accelerating Protocol Synthesis and Detecting
Unrealizability with Interpretation Reduction

Derek Egolf, Stavros Tripakis
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Accelerating Protocol Synthesis and Detecting
Unrealizability with Interpretation Reduction

Derek Egolf, Stavros Tripakis
Northeastern University, Boston

https://github.com/egolf-cs/tacas25

egolf.d@northeastern.edu

Key Contributions

•Synthesize symbolic distributed protocols represented in TLA+

[Lamport].

• Improve state of art in TLA+ synthesis (100x).

•Synthesize a lock protocol “from scratch.”

•Halt when no solution: unrealizability.

•New search space reduction technique: Interpretation Reduction.

• Improved counterexample generalization for pruning.

Sketching [Solar-Lezama]

Given an incomplete sketch with “holes,”find a correct completion.

Example sketch:
Send(src, dst) :=
∧ ???1
∧ message′ = ???2
∧ has lock′ = ???3

Receive(src, dst) :=
∧ ???4
∧ message′ = ???5
∧ has lock′ = ???6

Example completion
Send(src, dst) :=
∧ has lock[src]
∧ message′ = message∪{(src, dst)}
∧ has lock′ = has lock[src← false]

Receive(src, dst) :=
∧ (src, dst) ∈ message
∧ message′ = message \ {(src, dst)}
∧ has lock′ = has lock[dst← true]

Problem Statement

Experimental Results

n = 171; worse: 11; scythe TO: 47; poly TO 15

Unrealizable Experiments (n = 123)

•Scythe (old): TO = 107 / HALT = 16

•Polysemist (new): TO = 43 / HALT = 80

–Usually halted in < 60 seconds
–Did not TO unless Scythe did

Counterexample-Guided Inductive Synthesis (CEGIS)

Our approach uses standard CEGIS technique [Solar-Lezama].

Key Technical Ideas for Learner

•Naive learner: ignore cex, enumerate all protocols

many expressions; model checking expensive

•Pruning constraints: generalize counterexamples

discard protocols before model checking

•Equivalence reduction: do not use equiv. sub-expressions

avoid enumerating protocols in the first place

• Interpretation reduction: coarse, dynamic equivalence relation

Counterexample Generalization

safety cex: [x 7→ a]
A1−→[x 7→ b]

Sketch: (A1 := ???1 ∧ x′ = ???2)
Bad Completion: (A1 := true ∧ x′ = b)
Bad Completion: (A1 := x = a ∧ x′ = b)
Good Completion: (A1 := x = a ∧ x′ = a)
Good Completion: (A1 := x ̸= a ∧ x′ = b)

Pruning Constraint:

πcex := ???1([x 7→ a]) ̸= true ∨ ???2([x 7→ a]) ̸= b

• In general, many completions violate πcex.

•Checking P ⊨ πcex is much cheaper than model checking.

•We generalize deadlock, safety, and liveness violations.

•Prior work [FMCAD’24] uses less exact pruning constraints for dead-
lock/liveness.

Interpretation Reduction

Absolute Equivalence, e.g: x + y ≡ y + x
Interpretation Equivalence, e.g:

x + y ≡A x + x, where A = {[x 7→ 0, y 7→ 0]}

•A comes from pruning constraints. E.g.,

Π = { ???1([x 7→ 0, y 7→ 1]) ̸= 1 } → A = {[x 7→ 0, y 7→ 1]}
•Suppose we’ve enumerated y; enumerate x + y? No: y ≡A x + y.

•Avoids enumerating all “super-expressions” of x + y, e.g., x + x + y.

•Coarse eq. relation makes detecting unrealizability faster.

• [FMCAD’24] uses absolute equivalence for reduction.

Theorem: If e1 ≡A e2 and e1 enumerated, skipping e2 does not compromise
completeness

References
Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley (2002).
Solar-Lezama, A.: Program Sketching. Int. J. Softw. Tools Technol. Transf. (2013).
Egolf, D., Tripakis, S.: Efficient Synthesis of Distributed Protocols by Sketching. FMCAD (2024).



Pushing the Limit: Verified Performance-Optimal 
Causally-Consistent Database Transactions

Department of Computer Science
Information Security Group

● Distributed databases (key-value stores)

● Isolation of concurrent transactions, 
realized by concurrency control protocols.

● Spectrum of isolation levels:

● Trade-off: isolation vs performance
● TCC previously conjectured to be the 

strongest achievable isolation level for 
performance-optimal reads in the 
presence of transactional writes.

● We refute the conjecture and push the 
limit to TCCv with our novel protocol 
Eiger-PORT+.

● Concurrency control protocols are highly 
complex and prone to design errors and 
isolation bugs. → Deductive verification

Contributions
❖ Eiger-PORT+

➢ Stronger isolation guarantee

➢ Superior performance

❖ Protocol verification in Isabelle/HOL

➢ Refinement

➢ Reduction

Inverted commits: pairs of client commits in 
protocol executions not ordered by commit 
timestamps.

Can occur for causally independent 
concurrent transactions.

Problem: Inverted commits would require 
inserting rather than appending a 
transaction’s version to the version list. 

Can not be simulated by the abstract model.

Hence, refinement alone is not enough for 
verifying the protocol.

● We use reduction to transform any 
protocol execution into one of the 
restricted model such that:
reach (protocol) = reach (restricted protocol). 

● This is achieved by commuting 
independent concurrent events to 
eliminate inverted commits. (see arrows 
on the execution above)

Eiger-PORT+ protocol:
Timestamp-based (uses Lamport clocks)

- read-only transactions
➔own write above gst
➔or last write below gst

- write-only transactions: two-phase commit

● The relation of different timestamps in the model 
and finding invariants

2 Abstract Model: Isolation Level

5 Inverted Commits & Reduction

4 Correctness Proof & Invariants

3 Concrete Model: Eiger-PORT+1 Motivation

● Our Eiger-PORT+ protocol provides 
TCCv, thus refuting an open conjecture.

● Eiger-PORT+ outperforms state-of-the-art

● Refinement is not always enough
● We deductively verify that Eiger-PORT+ 

satisfies TCCv, using a combination of 
refinement and reduction.

6 Conclusions and Discussion

Image source: C. Baier, J. Katoen. 
2008. Principles of model checking, 

p. 595, Figure 8.1.

We specify isolation as an abstract model 
parameterized by an Isolation Level (IL).

The abstract model’s event system:

➔ States: (K, U)

➔ Events:
1) Atomic Commit

(K, U)   commit
    IL (K’, U’)

2) View Extension
 (K, U)   view ext

    IL (K, U’)

Proof guarantee:
refinement (reach (protocol)) ⊆ reach (IL)

● refinement mapping:
r : K and U reconstructed as shown above
𝝅: client_write_commit and client_read_done 
mapped to Atomic commit

● proof obligations:
canCommitIL: needs invariants (below)
LWW: needs reduction

Solution:
● We introduce a 

restricted protocol 
model that doesn’t 
produce inverted 
commits.

server 
model:

(per txn)

K: centralized multi-versioned 
key-value store

U: client views, capturing the 
distributed aspect

shabnam.ghasemirad@inf.ethz.ch

Shabnam Ghasemirad Dr. Christoph Sprenger Dr. Si Liu Luca Multazzu Prof. Dr. David Basin

Project repository:

previous Eiger-PORT+

weaker to stronger

client 
model:



• A compact representation for bit vector/matrices

• Boolean operations can be done efficiently

• 2𝑛-dimensional vector → 𝑛 Boolean variable

• Example:  0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1

SliQSim: A Quantum Circuit Simulator and Solver for Probability and Statistics Queries
Tian-Fu Chen and Jie-Hong R. Jiang, National Taiwan University

• Quantum state: complex vector |𝜓⟩ with size 2𝑛

1. Quantum system of 𝑛 qubits 

Quantum state evolves: apply 𝑈 on |𝜓⟩ 
Quantum gates:

   complex matrix 𝑈
   with size 2𝑛 × 2𝑛

A line is a qubit

2. Binary Decision Diagram (BDD)

• Transform quantum state/gate into several bit 

vectors/matrices

◼ 𝛼 =
1

2𝑘
𝑎𝜔3 + 𝑏𝜔2 + 𝑐𝜔 + 𝑑 ,

𝑎, 𝑏, 𝑐, 𝑑, 𝑘 ∈ ℤ and 𝜔 = 𝑒𝑖𝜋/4

• 𝑎, 𝑏, 𝑐, 𝑑 are decomposed into binary numbers 

and further represented by BDDs
 

  

  

  

Example: 

3. Algebraic Representation & Bit-slicing 

Compact, Efficient, Exact (no precision loss), 

and Easy for matrix/vector entries manipulations!

• Start from the initial quantum state

𝐹 = 𝑥0 𝑥1 . . . 𝑥𝑛−1

and apply gates sequentially

• Conduct measurement for the final state

1. Combine all BDDs to form a multi-terminal BDD 

(e.g., 𝜓𝑚 = 1/2, 1/2, 1/2, −1/2 T)

2. Decide the probability of each node by dynamic 

programming

3. Sample according to the probability

4. Simulation & Probability and Statistics Queries

1. Y.-H. Tsai, J.-H. R. Jiang, and C.-S. Jhang, “Bit-slicing the Hilbert space: Scaling up accurate quantum circuit simulation,” in Proc. DAC, 2021, pp. 439–444.

2. C.-Y. Wei, Y.-H. Tsai, C. -S. Jhang, and J.-H. R. Jiang, “Accurate BDD-based Unitary Operator Manipulation for Scalable and Robust Quantum Circuit Verification,” in Proc. DAC, 

2022, pp. 523-528.

3. T.-F. Chen, J.-H. R. Jiang, and M.-H. Hsieh, “Partial Equivalence Checking of Quantum Circuits,” in Proc. QCE, 2022.

a) Simulator – SliQSim  https://github.com/NTU-ALComLab/SliQSim     b) Equivalence Checker – SliQEC https://github.com/NTU-ALComLab/SliQEC

Previous Publications & Open Sourced Tools

ALCom Lab NTU

Quantum circuit:  a sequence of quantum gates

0.25 0.25

0.25 + 0.25 = 0.5

0.25*2 + 0.5 = 1 sample result = “01”

• Check the probability of certain property

1. Parse the condition as a Boolean formula

(e.g., 𝐹𝑀 = 𝑞0 ∨ 𝑞1)

2. Update 𝐹 ← 𝐹 ∧ 𝐹𝑀 for all BDDs

→ equivalently mask out states not 

satisfying the condition

3. Decide the probability of the root node by 

dynamic programming

4. Probability obtained !

0.25 0.25

0

0.25 + 0.25 = 0.5

0.25

0.25*2 + 0.5 = 1

0.25*2 + 0.25 = 0.75

paths not satisfying 

the property 

• Probability of satisfying a Boolean formula

• Probability of Hamming weight being in a range

• Expectation value of a Pauli-string

• Weighted sum of multiple properties

5. Supported Statistics

• Whether the value of a property is in a range

• Probability amplitude of a basis state

• Exact spectrum of the probability distribution

• ...

{d11k42001, jhjiang} @ntu.edu.tw



Synthesis with Guided Environments
Orna Kupferman and Ofer Leshkowitz

Hebrew University of Jerusalem, Jerusalem, Israel

Dealing with partial visibility

• The assignment to 𝐻 ⊆ 𝐼 is 
hidden from the system.

• System should satisfy 𝜑 for all 
assignments to 𝐻. 

• Simple specification become 
unrealizable. 

What’s going on?

• Magician – 

1. Gains partial information.

2. Guides fish step-by-step.

• Fish –

1. Picks 𝑝 adversarially.

2. Follows instructions – 

Remembers values & Performs 

calculations.

Think of a two-digit prime number 
𝑝.

Multiply digits and subtract from 
𝑝.

What’s the first digit of the 
result?

6

Subtract first digit from 𝑝2.

What’s the second digit of the 
result?

𝑝 + 2 is prime as well !! 

Synthesis of Reactive Systems

Reactive System –

• Environment generates assignments to input signals 𝑖1, 𝑖2, 𝑖3, … ∈ 2𝐼 

• System generates assignments to output signals 𝑜1, 𝑜2, 𝑜3, … ∈ 2𝑂 

• Outputs generated online: 𝑜𝑘  is determined by 𝑖1, 𝑖2, … , 𝑖𝑘.

Synthesis –

• Given a specification 𝜑 of “good computations”, 
automatically construct a reactive system that realizes 𝜑.

𝑰 = Finite set of input signals. 
𝑶 = Finite set of output signals

Example: 
𝜑 = 𝑖 𝑜
𝐼 = 𝑖 , 𝑂 = 𝑜  and 𝐻 = 𝑖 .

Dealing with partial visibility
(Back to Reactive Systems…)

F

F

F

When visiting your doctor do you – 

(A) Share all medical info 
with the elevator?

(B) Follow a sign that 
guides you to your floor?

A TGE sends “programs” used by 
Environment to assign guided outputs.

Environment needs memory.

Transducer with a Guided Environment

Example:

Specification: 𝜑 = 𝐺(𝑖 𝑜).

Hidden: 𝐻 = 𝐼 = 𝑖 .

Guided: 𝐺 = 𝑂 = 𝑜 .

program = “copy 𝑖 to 𝑜”

Env. Memory

TGE

A round of interaction with a TGE:
(𝐼 = 𝑉 ∪ 𝐻, 𝑂 = 𝐶 ∪ 𝐺)

• Env generates:

• Visible input 𝑣 & Hidden input ℎ.

• TGE reads visible input 𝑣:

• Updates state to 𝑠′.

• Generates – 
Controlled output 𝑐 & Program 𝑝.
𝑐 ∈ 2𝐶  and 𝑝: 𝑀 × 2𝐻 → 𝑀 × 2𝐺.

• Env evaluates 𝑝 𝑚, ℎ = 𝑚′, 𝑔 .

• Updates memory to 𝑚′.

• Sets guided out to 𝑔.

Transducer with a Guided Environment

Env In

Controlled   
Out

Guided 
Out

Controlled

Guided

Program

Env’ does all 
the work

TGE
Realizing 𝜑

no visibility (𝑉 = ∅)
no control (𝐶 = ∅) 

1 state
𝑚 memories

Standard transducer
(Full visibility and control) 

Realizing 𝜑
𝑚 states

TGE
Realizing 𝜑

Partial Visibility\Control
𝑛 states

𝑚 memories

Standard transducer 
(Full visibility and control)

Realizing 𝜑 
𝑛 ⋅ 𝑚 states

Product :TGE×Env

Memory-State Trade-offs Memory Monotonicity

More visibility \ guidance  Less 
memory.

1. Increasing visibility (viewing also ℎ ∈ 𝐻) can 

only reduce needed memory.

2. Increasing guidance (guiding also 𝑐 ∈ 𝐶) 

can only reduce needed memory.

M
e

m
o

ry

Visibility \ Guidance

Assignment to ℎ can be hard-coded into programs

Assignment to 𝑐 can be hard-coded into programs

If the system sees more or 
guides more, the environment 
can remember less.

Solving SGE – Synthesis with Guided Environments

Reduce synthesis to the non-emptiness of 𝐴𝑀,𝐻,𝐺
𝜑

:

1. Search for a finite witness 𝒯 for non-emptiness of 𝐴𝑀,𝐻,𝐺
𝜑

 in EXPTIME.

2. If empty – Not realizable. 

3. Otherwise – 𝒯 describes a TGE realizing 𝜑 with 𝐻 hidden and 𝐺 

guided.

Theorem: (1) A tree 𝒯 is accepted by 𝐴𝑀,𝐻,𝐺
𝜑

 iff it realizes 𝜑. 
    (2) 𝐴𝑀,𝐻,𝐺

𝜑
 is of size 𝑀 ⋅ exp(|φ|).

Corollary: SGE is 2EXPTIME in |φ| and EXPTIME in |𝑀|.

The problem: Synthesize a TGE that realizes 𝜑 with 𝐻 hidden, 𝐺 
guided and at most 𝑘 environment memories or determine that there 
is no such TGE.



Non-Cognitive Predictors of Student Success:
A Predictive Validity Comparison Between Domestic and International Students

We study the existence and synthesis of stable outcomes with desired utilities
for the players. The problem generalizes rational synthesis and enables the

synthesis of outcomes that satisfy wellness, fairness, and priority requirements.

Take a picture to 
download the full paper

PRESENTER: 

Yoav Feinstein

Non-Zero-Sum Games with 
Multiple Weighted Objectives 

Yoav Feinstein, Orna Kupferman, 
Noam Shenwald 

k-player weighted multiple objectives

Set of objectives 𝛼 = {𝛼1, 𝛼2,..., 𝛼m}     𝛼l ⊆ V   (𝛼𝑙 is a 
Büchi objective)  
Set of weight functions {𝑤1, 𝑤2, … , 𝑤𝑘}          𝑤𝑖: 2𝛼 → ℤ 
(one for each player in the game)

For a play 𝜌: 
- sat(𝜌,𝛼) ⊆ 𝛼     The set of objectives that 𝜌 satisfies 
- For every 𝑖 ∈ 𝑘 , value(𝜌,𝛼,𝑤𝑖) = 𝑤𝑖(sat(𝜌,𝛼))          
The utility of Player 𝑖

We introduce and study non-zero-sum multi-player games 
with weighted multiple objectives. 
In these games, the objective of each player consists of a set 
𝛼 of underlying objectives and a weight function w: 2𝛼 → ℤ 
that maps each subset 𝑋 of 𝛼 to the utility of the player when 
exactly all the objectives in 𝑋 are satisfied. 
The weight functions lift the setting of non-zero-sum multi-
player games to the general quantitative case, allowing a rich
reference to the underlying objectives.

Stable profiles in weighted k-player games:

For a set 𝑆 ⊆ [𝑘] of system players, and a predicate 𝑃. 
The Partially-Fixed NE with Desired Utilities (DNE) problem is to 
return an 𝑆-fixed NE 𝜋 that satisfies 𝑃.

A predicate describes desired utilities of the play.
For example: 𝑢1 > 2 ∧ (𝑢2 < 3 ∨ 𝑢3 ≥ 1) 

Zero-sum games: No overlap among objectives, find the winning 
players
Non-zero-sum games: Overlap among objectives, find stable 
profiles

P3 can move to red which gives her $3

Thus, every NE which satisfies 𝛼1 
must also give at least $3 to P3 
(else she would deviate)

Our profile needs to satisfy both 𝛼1 and 
𝛼2 so that P3 gets $4 and will not benefit 
from deviating to satisfy 𝛼3.

Limitation on the weights

We study the extension of the game by payments, with which players can
incentivize each other to follow strategies that are beneficial for the paying
player. We show how such payments can be used in order to repair 
systems. 

Applications of k-player weighted multiple objectives

A payment function 𝑝: 𝑘 × 𝑘 → ℕ 
𝑝 𝑖, 𝑗  the amount Player i commits to pay Player j when 𝛼𝑖 is satisfied

Set of Buchi objectives, one for each player

{𝛼1, 𝛼2,..., 𝛼k}     𝛼i ⊆ V

Ri the reward Player i receives when objective 𝛼𝑖 is satisfied

{R1, R2,..., Rk}      Ri ∈ ℕ

Games with Payments

For a play 𝜌, 𝑊(𝜌) is the set of objectives satisfied by 𝜌

𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖 𝜌 =

𝑅𝑖 − 

𝑗∈ 𝑘

𝑝 𝑖, 𝑗 + 

𝑗∈𝑊 𝜌

𝑝 𝑗, 𝑖  𝑖 ∈ 𝑊(𝜌)



𝑗∈𝑊(𝜌)

𝑝 𝑗, 𝑖  𝑖 ∉ 𝑊(𝜌)

The reward for Player i The payment to 
other players

The payment from other 
players

The utility of 
Player i is:

The payment from other 
players

The monetary-based system-repair problem is given a set of 
system players 𝑆, and a predicate 𝑃 to decide if there exists a 
payment function 𝑝: 𝑺 × 𝑘 → ℕ and a profile 𝜋 such that 𝜋 is 
a solution for the DNE problem over the payment game with 
the payment function 𝑝.

There is a warehouse, P1 and P2 are robots who 
wants to access the warehouse to move inventory. 
P3 is a guard making sure all is in order.

yoav.feinstein@mail.huji.ac.il,
orna@cs.huji.ac.il, 
noam.shenwald@mail.huji.ac.il



STREAM-BASED MONITORING OF 
ALGORITHMIC FAIRNESS
Jan Baumeister, Bernd Finkbeiner, Frederik Scheerer, Julian Siber, Tobias Wagenpfeil

MONITORING COMPAS RUNTIME COMPARISON

UNFAIR AI SYSTEMS MONITORING FAIRNESS 
PROPERTIES

AI is used for critical decisions. COMPAS is an AI tool to 
predict recidivism. ProPublica revealed that COMPAS 
scores are biased against Afro-Americans.

COMPAS

We propose to use the RTLola monitoring framework for 
detecting unfairness during the deployment of black-box  
AI systems through estimating conditional probabilities.

SPECIFYING EQUALIZED ODDS WITH RTLOLA

SYNTHETIC DATA

Monitoring with RTLola is faster 
than implementations based on 
SQLite and the streaming database 
RisingWave on the synthetic data.

We contribute a 
benchmark generator for 
constructing synthetic 
data of scaling size and 
complexity, which model 
university admission and 
job hiring.

This allows a thorough 
runtime evaluation and 
comparison.

…

output tp_ratio

tp_ratio(   )

tp_ratio(.  )

output tp_event

input event, group
input id, score

.aggregate(over: 2y, using: ∃    )

…

…!
"#

!
"#

!
"#

!
"#

!
"#

!
"#

$
""

!
"#

$
""

!
""

$
""

!
""

$
""

!
""

$
""

!
""

tp_event(    )

tp_event(    )

tp_event(    )

Parameterized streams to group individuals and 
calculate the conditional probability per group. 
For the true positive ratio, aggregate over 
individuals with a high risk

Input streams representing the COMPAS events.
We differentiate between Screen and Recidivism

Parameterized streams that store the recidivism
event of an individual as well as their score

Use aggregations to check whether a person
reoffended over 2 years and to count how many
individuals from a group have reoffended

…fairunfair

The monitor detects that the 
COMPAS system violates equalized 
odds around 3 months after the 
first outcomes are observed.

|ℙ(        >        | Y     , ∃2years  ) - ℙ(        >        | Y     , ∃2years  ) | < ε

www.rtlola.org
31st International Conference on Tools and Algorithms for 
the Construction and Analysis of Systems (TACAS 2025)
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CERTIFYING PARETO OPTIMALITY
IN MULTI-OBJECTIVE MAXSAT
Christoph Jabs1, Jeremias Berg1, Bart Bogaerts2, Matti Järvisalo1 @ TACAS’25
1University of Helsinki, 2KU Leuven & Vrije Universiteit Brussel Presentation Wednesday 11:30

MULTI-OBJECTIVE OPTIMIZATION
I Many real-world problems have

multiple conflicting objectives.
I Aim: Pareto-optimal solutions
I Linear combination of objectives

not sufficient

MAXIMUM SATISFIABILITY
I Constraints: propositional formula,

objective(s): linear function over variables
I Efficient for real-world optimization problems

CONTRIBUTIONS
I VeriPB proofs for multi-objective MaxSAT
I No modifications to VeriPB proof system
I Open-source implementation for three

algorithms
I Showing low overhead of proof logging

PROOF LOGGING

Solver

Proof Checker

Solution

writes verifies

I Write log of reasoning steps while solving
I Simple or formally verified checker
I Checking proof verifies correctness of result

VERIPB [BOGAERTS ET AL. JAIR’23]

I Pseudo-boolean (cutting planes) proof system
I Derive constraints by linear combination
I Redundant constraints (RAT generalization

[Järvisalo et al. IJCAR’12])
I Native single-objective support
I Preorder (originally for symmetry breaking),

witness for redundant constraints must be
smaller in preorder

MO-PROOFS
Certificate that at least one representative solu-
tion for each non-dominated point was discov-
ered.

PROOF SETUP

Unmodified VeriPB proof system
1. Encode Pareto dominance as preorder in proof
2. Now Pareto-optimal solutions can only be

explicitly excluded in the proof
3. It the proof terminates as unsatisfiable, all

Pareto-optimal solutions must appear in the
proof

Syntactic restrictions
I First step in proof must load the Pareto order
I Order must never be changed

PARETO DOMINANCE CUTS
I Blocking all solutions that are worse than the

current one
I Similar to solution-improving constraint

0 1 2 3 4
0

1

2

3

4

O1

O
2

Infeasible region
Solutions

Pareto-optimal solutions
Pareto dominance cut

Certifying a Pareto dominance cut for solution α

1. Map each weakly dominated solution to α;
Redundant with α as witness

2. Exclude α itself
3. Derive cut from steps 1 and 2

MO-MAXSAT ALGORITHMS

P-MINIMAL [SOH ET AL. CP’17]

1. Find a solution SAT solver
2. Introduce PD cut
3. Find a dominating solution
I If yes, goto 2
I If no, previous is optimal, goto 1

Proof needs to cover
I SAT solver reasoning
I CNF Objective encodings
I PD cuts (see above)

LOWER-BOUNDING
[CORTES ET AL. TACAS’23]

I Execute P -Minimal within upper-bounds on
objectives

I Once done, loosen upper-bounds
Upper-bounds on objectives can be ignored in proof
→ same as P -Minimal

BIOPTSAT [JABS ET AL. JAIR’24]

I Bi-objective
I Optimize first one objective, then the other
I When minimizing the second objective, PD

cuts can be strengthened to unit clauses
In proof
I Derive lower-bound on first objective
I Certify PD cut
I Strengthen PD cut based on known

lower-bound

EXPERIMENTAL EVALUATION

RESULTS
PER-INSTANCE PROOF LOGGING OVERHEAD

10 100
10

100

1 000

5 400

5 400

No proof logging (s)

Pr
oo

fl
og

gin
g

(s
)

P -Minimal

10 100 5 400

No proof logging (s)

Lower-Bounding

10 100 5 400

No proof logging (s)

BiOptSat
AVERAGE OVERHEAD AND CHECKING
TIME

Algorithm w/logging
w/o logging

checking
w/logging

P -Minimal 1.233 47.52
Lower-Bounding 1.220 21.81
BiOptSat 1.247 29.70
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Formally Verifying a Transformation from 
MLTL Formulas to Regular Expressions

● Available on the Archive of Formal Proofs under the 
entry “Mission-time Linear Temporal Logic to Regular Expressions”

● We formalize each operation of the WEST algorithm in 
and prove overall correctness of the algorithm.

● We use Isabelle/HOL’s code generator to obtain an 
implementation of the WEST algorithm in Haskell 

Formalization Contributions

Zili Wang*, Katherine Kosaian+, Kristin Yvonne Rozier*

*Iowa State University, +University of Iowa
[ziliw1, kyrozier]@iastate.edu, katherine-kosaian@uiowa.edu

Acknowledgments: This work is supported by the NSF-GRFP 2024364991, NSF CAREER Award CNS-1552934, 
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MLTL is a finite version of Linear Temporal Logic with 
discrete integer time bounds on the temporal operators. 
Here are some examples of traces (assignments of 
variables through time) that satisfy various MLTL formulas:

Mission-time LTL (MLTL)

The results of formal verification are only as trustworthy as 
their input specifications. As such, the WEST tool was 
created to facilitate writing specifications in Mission-time 
Linear Temporal Logic (MLTL) by visualizing MLTL 
formulas as regular expressions (regexes). To certify the 
correctness of the WEST tool, we formally verify the 
correctness of the WEST algorithm in the interactive 
theorem prover Isabelle/HOL. We then generate a code 
export from our verified development in Haskell and use 
this to experimentally validate the existing WEST tool.

Overview

Regular expressions (regexes) describe which variables 
must be true or false at certain timesteps. We say that a 
regex matches a trace. For example:

MLTL → Regular Expressions

● Fix a variable ordering 
{p0, p1}

● 1 = true, 0 = false, 
S = any value

The WEST algorithm: 
Transforms MLTL → Regex
Given an MLTL formula, 
computes the regular expressions 
which captures all the satisfying 
traces of the formula. 
For example on (p0U[1,6]p1), 
WEST produces the following:

Check out all of our work here →
west.temporallogic.org

Speed Comparison

Speed was not the 
focus of this work, but 
surprisingly fast!
1000 random formulas
● Operator nesting 

depth = 10
● Maximum interval 

bounds = 5
● Number of variables 

= 10

  Unverified          Verified
             Equivalence Check        Equivalence Check

     From Isabelle/HOL 
           (~1150 LOC)

Tool Validation

Prototype 
WEST

WEST 
Isabelle

Test suite: 1662 formulas that targets every combination 
of operator nesting
Verified check: holds on 1658 formulas, times out on 4

Example - (¬p3 U[0,2] ¬p2) R[0,2] (p0 U[0,2] ¬p1)
Unverified check: Succeeded on all 1662

Code Export

WEST 
Isabelle



• SMS introduces breaking constraints during the search, so, 
only a partial solution is known...

• This is an incomplete solution that can still be extended to a 
well-defined solution. 

• A partial solution  is lexicographically minimal iff one of its ex-
tensions  is lexicographically minimal,
• where  is the set of all complete solutions that  can 

be extended to.

• Does there exist a permutation  s.t. the image of the cur-
rent (partial) solution  under  is strictly smaller than ?

• If so, use  to exclude  and its extensions!
• Find breaking permutations by either:

• performing a backtracking search over the space of possible 
permutations,

• or by encoding as a SAT problem what it means for a per-
mutation to be useful.
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PARTIAL SOLUTIONS MINIMALITY CHECK FOR YBE

• SAT Modulo Symmetries (SMS) was originally introduced in 
[KS21,KS24].

• It forces a SAT solver to generate only non-isomorphic solu-
tions during the search:
• Obtain a partial interpretation from the SAT solver.
• Perform a Minimality Check:

• verify if the assignment can be extended to a complete 
assignment that is lexicographically minimal.

• if this fails, the solver aborts the current branch of the 
search tree by learning a new clause.

2.
 S

AT
 M

O
D

U
LO

 
SY

M
M

ET
R
IE

S

SAT MODULO SYMMETRIESSAT
• Boolean Satisfiability (SAT) problem decides if there exists a 

satisfying assignment for a given propositional formula.
• SAT solvers can:

•  decide if a formula is satisfiable,
• enumerate satisfying assignments (if they exist)...

• We encode the mathematical problem as a propositional for-
mula,
• hence, a satisfying assignment corresponds to a solution.

• Yang-Baxter equation (YBE) originally introduced in context 
of statistical [Yan67] and quantum mechanics [Bax72].

• Applications in knot theory, quantum computing...
• We focus on a subset of solutions.

• Finite, involutive, non-degenerate, combinatorial solutions.
• These solutions have relations to group and ring theory.
• They can be studied using an equivalent mathematical struc-

ture: non-degenerate cycle sets.

• Enumerating all (non-isomorphic) solutions to the YBE is an 
open problem!

• A database of solutions could inspire:
• experimentation,
• examples of algebraic structures to study,
• and counterexamples to previous conjectures...

• [AMV22] enumerated solutions up to size 10 using a con-
straint programming approach with static symmetry breaking.1.
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N
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R
O

THE YANG-BAXTER EQUATION ENUMERATION

INCREMENTAL SAT-BASED ENUMERATION OF
SOLUTIONS TO THE YANG-BAXTER EQUATION
Daimy Van Caudenberg1, Bart Bogaerts1,2, 
Leandro Vendramin3

1Declarative Languages and Artificial Intelligence section, KULeuven, Leuven, Belgium
2Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
3Department of Mathematics and Data Science, Vrije Universiteit Brussel, Brussels, Belgium

[AMV22] Akgün, Ö., Mereb and M., Vendramin, L. (2022). Enumeration of Set-Theoretic Solutions to the Yang-Baxter 
Equation. In Mathematics of Computation. 91(335).
[YAN67] Yang, C. N. (1967). Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Func-
tion Interaction. In Phys. Rev. Lett. 19 (23).
[BAX72] Baxter, R. J. (1972). Partition function of the Eight-Vertex lattice model. In Annals of Physics 70(1).
[KS21] Kirchweger, M. and Szeider, S. (2021). SAT Modulo Symmetries for Graph Generation. In CP LIPIcs, vol. 210. 
[KS24] Kirchweger, M. and Szeider, S. (2024). SAT Modulo Symmetries for Graph Generation and Enumeration. In ACM 
Trans. Comput. Log., 25(3).

• Certifying the results.
• We obtain the same results as [AMV22], but that only 

means that we are either both correct or both wrong...
• Enumerating related structures:

• racks, used to enumerate skew cycle sets.
• skew Cycle Sets, correspond to non-degenerate set-theo-

retic solutions.
• biquandles, applications in knot theory.
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Backtracking Approach - Total Time

Incremental Approach - Total Time

AMV22 - Isomorphism Check Time

Backtracking Approach - Minimality Check Time

SAT-Based Approach - Minimality Check Time Contact: Daimy.Vancaudenberg@kuleuven.be
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Revisiting Differential Verification:
Equivalence Verification with Confidence
Samuel Teuber | Philipp Kern | Marvin Janzen | Bernhard Beckert
{teuber,philipp.kern}@kit.edu

x

f1(x)

f2(x)

=

Differential Verification with Zonotopes
Single NN verification via Zonotopes
Propagate 𝒵 i ⊇ f (i)(x)

Abstract Transformer for W · 𝒵 +b
Abstract Transformer for ReLU(𝒵)

Differential Verification via Zonotopes
Also propagate 𝒵 i

𝛥 ⊇ f (i)
1 (x) – f (i)

2 (x)

cg1

g2g3

𝒵 = ((g1 g2 g3), c)

A Zonotope Transformer for ReLU
Differences

ReLU(𝒵1) – ReLU(𝒵2) =
= ReLU(𝒵1) – ReLU(𝒵1 –𝒵𝛥)

Requires distinction over nine cases

Differential Verification for Classification
𝜀 equivalence provides no guarantees for resulting classification!

Use differential bounds for
LP formulation
Verify classification
equivalence
Threshold T ≥ 0:
Confidence of f1

For all k :
Check max ≤ 0 for all j ̸= k :

max
x

(𝒵2 (x))j – (𝒵2 (x))k

s.t. (𝒵1 (x))l + T ≤ (𝒵1 (x))k (l ̸= k )
𝒵𝛥 = 𝒵1 – 𝒵2

Linear Softmax Approximation

0.6 0.8 1.0
δ

0.0

0.2

0.4

0.6

0.8

Er
ro
r

n=2
n=3
n=5
n=10

n=100

errσ(n, 0) errpoly(n, δ)

A single polytope over-approximation of
outputs with confidence ≥ 𝛿:{︃
z ∈ Rn

⃒⃒
⃒⃒
⃒
⋀︀n

j=1
j ̸=i

zi – zj ≥ ln
(︀

𝛿
1–𝛿

)︀
}︃

{︀
z ∈ Rn

⃒⃒
softmax (z)i ≥ 𝛿

}︀⊆

Equivalence Properties
For ReLU NNs f1, f2, input set X ⊆ RI

and a p-norm ‖ · ‖p:

𝜀 equivalence [2, 3, 4]
∀x ∈ X .‖f1(x) – f2(x)‖p ≤ 𝜀

Top-1 equivalence [2]
∀x ∈ X . argmaxi f1,i(x) = argmaxi f2,i(x)

Classification Equivalence

x1

x2 Differential verification
significantly helps with 𝜀-
equivalence.
Not helpful for Top-1-
equivalence
Lack of asymmetry in
Top-1 property

Building on confidence-based
verification [1]:

𝛿-Top-1 equivalence
f1, f2 have the same classification for ev-
ery input where softmax(f1(x)) ≥ 𝛿

Evaluation
Across 5 benchmarks, VeryDiff (our
tool) outperforms other (non-)differential
NN verification tools:

Benchmark Variant Equiv. Counterex. Speedup
Median Max

St
an

da
rd

ε
eq

.

ACAS

VeryDiff (ours) 150 (+24.0%) 153 (+2.0%) — —
NNEquiv 37 142 37.3 8091.2
MILPEquiv 16 3 7224.8 36297.0
Marabou 110 109 141.3 10070.5
α, β-CROWN 121 150 15.4 1954.1

MNIST
(VeriPrune)

VeryDiff (ours) 352 (+101.1%) 62 (-43.6%) — —
NNEquiv 0 103 12.6 166.2
Marabou 10 24 183.9 1390.8
α, β-CROWN* 175 110 (516.9) (4220.8)

N
eu

ro
D

iff
ε

eq
. ACAS VeryDiff (ours) 169 (+39.7%) 161 (+103.8%) — —

NeuroDiff 121 79 43.1 16134.7
MNIST
(VeriPrune)

VeryDiff (ours) 457 (+11.5%) 242 (+404.1%) — —
NeuroDiff 410 48 4.5 1086.8

δ-Top-1 LHC VeryDiff (ours) 77 (327.8%) — — —
α, β-CROWN 18 — 324.5 11274.3
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Weakly acyclic diagrams: A data structure for infinite-
state symbolic verification
Michael Blondin1, Michaël Cadilhac2, Xinyi Cui3, Philipp Czerner3, Javier Esparza3, and Jakob Schulz3
1 Université de Sherbrooke, Canada; 2 DePaul University, Chicago, USA; 3 Technical University of Munich, Germany

1. Introduction
Ordered Binary Decision Diagrams

(OBDDs) [1, 2]

⋄ data structure representing fixed-
length languages

⋄ efficient top-down dynamic program-
ming for operations

⋄ used for finite-state symbolic model-
checking

Weakly Acyclic Diagrams

⋄ data structure representing weakly
acyclic languages

⋄ maintains algorithmic advantages of
OBDDs

⋄ can be used for model checking in
infinite-state systems

we generalize OBDDs to
a class of infinite languages

2. Weakly Acyclic Languages
⋄ Weakly acyclic languages: all cycles in

DFA are self-loops
⋄ closed under union, intersection and com-

plementation

b

a

a

b

a, b

b

a, b

a
a, b

3. Weakly Acyclic Diagrams
⋄ data structure representing weakly acyclic

languages using a table of nodes
⋄ Node: state identifier, successors, accept-

ing flag

q3 q2 q∅

q4 qΣ∗

b

b

b, c

a

Σ∗

Σ∗

a
a

c
c

id succ. tuple s flag b

q∅ [self, self, self] 0
qΣ∗ [self, self, self] 1
q2 [qΣ∗ , self, q∅] 0
q3 [self, q2, q∅] 1
q4 [q2, qΣ∗ , qΣ∗ ] 0

4. Example of a Binary Operation
intersection(q1, q2) ; q1∩2

1. check base cases
⋄ q1 = q∅ ∨ q2 = q∅ =⇒ q1∩2 = q∅

⋄ q1 = qΣ∗ =⇒ q1∩2 = q2 and q2 = qΣ∗ =⇒ q1∩2 = q1

2. compute successor tuple s1∩2 and flag b1∩2 for q1∩2

⋄ s1∩2[a] =
{

self if s1[a] = q1 ∧ s2[a] = q2
intersection(s1[a], s2[a]) otherwise

⋄ b1∩2 = b1 ∧ b2

⋄ given nodes for L1
and L2 compute
node for L1 ∩ L2

⋄ memoization to
avoid exponential
complexity

5. Pre Operation
⋄ Transducers: automata over the alphabet Σ × Σ for fixed-length regular relations R ⊆ Σ∗ × Σ∗

⋄ PreR(L) := {u ∈ Σ∗ : (u, v) ∈ R, v ∈ L} for a relation R and a language L

Transducer for relation R

p0 p1

(b, a)

(a, c)

Weakly acyclic DFA for L

q0 q1

a, b

c

PreR(L)

(p0, q0) (p1, q1)

b

a

⋄ algorithm computing PreR(L) given transducer for R and weakly acyclic DFA for L under
assumption: language PreR(L) is weakly acyclic

⋄ main idea: apply powerset construction on pairing of transducer and DFA contracting cycles
in the process

pre(M = {(p0, q0)} ; qM

1. mark M

2. Ma =
⋃

b∈Σ{(p′, q′) : (p, q) ∈ M, p
(a,b)−−−→ p′, q

(b)−−→ q′}

3. sM [a] =
{

self if Ma is marked
pre(Ma) otherwise

4. bM ⇐⇒ ∃(p, q) ∈ M : p, q both accepting states

5. unmark M

⋄ M set of state pairs, representing
one state in DFA for PreR(L)

⋄ use of markings to detect and re-
move cycles

⋄ polynomial-time improvement if
input transducer and DFA satisfy
specific condition such that deter-
minism is guaranteed

6. Application: Backwards Reachability
⋄ system as a set of configurations with a transition relation like lossy channel systems, Petri

nets or broadcast protocols
⋄ Backwards Reachability algorithm: computes the set of all predecessors of a given upward-

closed set of configurations, used for safety verification in systems [3]
⋄ use Weakly Acyclic Diagrams for Backwards Reachability

∗ set of configurations ; weakly acyclic language
∗ transitions ; transducers
∗ predecessor computation using pre

Left: Petri net, Right: transducer encoding transition t

p q
t2

1

3

1
(•, •)

(•, •)
(•, X) (#, #) (•, •)

(•, •)
(X, •) (X, •) (#, #)

7. Experimental Results
⋄ library wadl for weakly acyclic dia-

grams implementing backwards reach-
ability for lossy channel systems, Petri
nets and broadcast protocols

⋄ compared wadl to established safety
verification tools BML[4], McScM[5]
and MIST[6]

⋄ results show that wadl is competitive,
solving most of the instances

Benchmark BML McScM wadl
tcp_simplest_err 0.04 0.01 0.04
BAwCC_enh 4.17 124.72 0.50
tcp_simplest 0.03 0.34 0.06
peterson_3 to to 19.50
ring2 0.36 so 0.04
brp_like_modified 0.39 0.39 0.29
simple_server 0.13 0.25 0.06
pop3 400.20 4.73 2.07
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Participants

Table 1: Competition candidates and representing
jury members; Hors Concours participants are not
listed since they are not represented by a jury mem-
ber. new for first-time participants, meta for meta-
verifiers

Participant Jury member Affiliation
2LS V. Malík BUT, Czechia
aise Z. Chen NUDT, China
AProVE N. Lommen RWTH Aachen, Germany
BRICK L. Bu Nanjing U., China
Bubaak M. Chalupa ISTA, Austria
Bubaak-SpLit M. Chalupa ISTA, Austria
CoOpeRace meta newV. Vojdani U. Tartu, Estonia
CPAchecker M. Lingsch-Rosenfeld LMU Munich, Germany
CPV P.-C. Chien LMU Munich, Germany
Dartagnan H. Ponce de León Huawei Dresden, Germany
Deagle F. He Tsinghua U., China
EmergenTheta L. Bajczi BME Budapest, Hungary
ESBMC-incr T. Wu U. Manchester, UK
ESBMC-kind T. Wu U. Manchester, UK
GDart F. Howar TU Dortmund, Germany
Goblint S. Saan U. Tartu, Estonia
Hornix new M. Blicha U. Lugano, Switzerland
Java-Ranger S. Hussein Ain Shams U., Egypt
JBMC P. Schrammel Diffblue, UK
Korn G. Ernst LMU Munich, Germany
MLB L. Bu Nanjing U., China
Mopsa R. Monat Inria & U. Lille, France
Nacpa meta new H. Wachowitz LMU Munich, Germany
Proton R. Metta TCS, India
RacerF new T. Dacík BUT, Czechia
SVF-SVC new M. Richards U. New South Wales, AU
sv-sanitizers S. Saan U. Tartu, Estonia
SWAT N. Loose U. Luebeck, Germany
Symbiotic M. Jonáš Masaryk U., Czechia
Theta L. Bajczi BME Budapest, Hungary
Thorn new L. Bajczi BME Budapest, Hungary
UAutomizer M. Heizmann U. Freiburg, Germany
UGemCutter D. Klumpp U. Freiburg, Germany
UKojak M. Bentele U. Freiburg, Germany
UTaipan D. Dietsch U. Freiburg, Germany

Features

Table 2: Algorithms and techniques that the partic-
ipating verification systems used; new for first-time
participants, ∅ for hors-concours participation, and
meta for meta-verifiers
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2LS ✓ ✓ ✓ ✓ ✓ ✓

aise ✓

AProVE ✓

BRICK ✓ ✓ ✓ ✓ ✓

Bubaak ✓ ✓ ✓ ✓ ✓

Bubaak-SpLit ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CBMC∅ ✓ ✓ ✓

COASTAL∅ ✓

ConcurrentW2T ✓

CoOpeRace meta new ✓ ✓ ✓

CPAchecker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPALockator∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPA-bam-bnb∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPA-bam-smg∅

CPA-w2t∅ ✓ ✓ ✓

CProver-w2t∅ ✓

CPV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Crux∅ ✓

CSeq∅ ✓ ✓ ✓

Dartagnan ✓ ✓ ✓

Deagle ✓ ✓

DIVINE∅ ✓ ✓ ✓ ✓ ✓ ✓

EBF∅ ✓

EmergenTheta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ESBMC-incr ✓ ✓ ✓ ✓

ESBMC-kind ✓ ✓ ✓ ✓ ✓ ✓

Frama-C-SV∅ ✓

Gazer-Theta∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GDart ✓ ✓ ✓

GDart-LLVM∅ ✓ ✓

Goblint ✓ ✓ ✓

Graves-CPA∅ meta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GWIT∅ ✓ ✓ ✓

Hornix new ✓

Infer∅ ✓ ✓ ✓ ✓

Java-Ranger ✓ ✓

JayHorn∅ ✓ ✓ ✓ ✓ ✓ ✓

JBMC ✓ ✓ ✓

JCWIT∅ ✓

JDart∅ ✓ ✓ ✓

Korn ✓ ✓ ✓ ✓ ✓

Lazy-CSeq∅ ✓ ✓ ✓

LF-checker∅

LIV ✓

Locksmith∅ ✓

MetaVal ✓ ✓

MetaVal++ new ✓

MLB ✓ ✓ ✓

Mopsa ✓

Nacpa meta new ✓ ✓

NITWIT∅ ✓

PeSCo-CPA∅ meta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PIChecker∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pinaka∅ ✓ ✓ ✓

PredatorHP∅ ✓

Proton ✓

RacerF new ✓

SPF∅ ✓ ✓ ✓

SVF-SVC new ✓

sv-sanitizers ✓

SWAT ✓

Symbiotic ✓ ✓ ✓ ✓ ✓ ✓ ✓

Symbiotic-Witch ✓ ✓

Theta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Thorn new ✓ ✓ ✓

UAutomizer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UGemCutter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UKojak ✓ ✓ ✓ ✓ ✓

UReferee new ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UTaipan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriAbs∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriAbsL∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriOover∅

Wit4Java
Witch ✓

Frameworks

Table 3: Solver libraries and frameworks that are
used as components in the participating verification
systems; new for first-time participants, ∅ for hors-
concours participation and meta for meta-verifiers

Tool C
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2LS ✓ ✓

aise ✓ ✓

AProVE ✓

BRICK ✓ ✓

Bubaak ✓

CBMC∅ ✓ ✓

COASTAL∅ ✓

CPAchecker ✓ ✓ ✓ ✓

CPALockator∅ ✓ ✓ ✓

CPA-bam-bnb∅ ✓ ✓ ✓

CPA-bam-smg∅ ✓ ✓ ✓

CPV ✓

Crux∅ ✓

CSeq∅ ✓ ✓

Dartagnan ✓

Deagle ✓

EBF∅ ✓ ✓

ESBMC-incr ✓ ✓

ESBMC-kind ✓ ✓

GDart ✓ ✓

GDart-LLVM∅ ✓

Goblint ✓

Graves-CPA∅ meta ✓ ✓ ✓

Hornix new ✓

Java-Ranger ✓

JBMC ✓ ✓

JDart∅ ✓ ✓ ✓

Korn ✓

Lazy-CSeq∅ ✓ ✓

Mopsa ✓

Nacpa meta new ✓

PeSCo-CPA∅ meta ✓ ✓ ✓

PIChecker∅ ✓ ✓ ✓ ✓

SPF∅ ✓

SWAT ✓

Symbiotic ✓

UAutomizer ✓ ✓ ✓ ✓ ✓

UGemCutter ✓ ✓ ✓ ✓ ✓

UKojak ✓ ✓ ✓

UReferee new ✓ ✓ ✓ ✓ ✓

UTaipan ✓ ✓ ✓ ✓ ✓

VeriAbs∅ ✓ ✓ ✓ ✓

VeriAbsL∅ ✓ ✓ ✓ ✓

More Information

https://sv-comp.sosy-lab.org/2025/

Results

Table 4: Quantitative overview over all regular re-
sults; empty cells are used for opt-outs, new for first-
time participants, ∅ for hors-concours participation,
and meta for meta-verifiers
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Bubaak-SpLit 6053 3349 -189 6556 1122 1649 5562 16497
CoOpeRace meta new

CPAchecker 10368 4892 1770 8777 1301 2178 6999 26786
CPV 7755
Dartagnan 3385
Deagle 4604
EmergenTheta 2106 -361 620
ESBMC-incr 2155
ESBMC-kind 8717 3158 2155 8668 1115 -1948 3741 18444
Goblint 2427 2198 2448 8486 969 545 17266
Hornix new

Korn
Mopsa 2807 2697 0 8491 0 2086 13521
Nacpa meta new 10270 4887 1453 8843 1290 2127 6997 26131
Proton 3685
RacerF new

sv-sanitizers 861 1723
SVF-SVC new -68717 -10965 -19469 0
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Theta 3277 600 2275 -170 712
Thorn new -2519 298 -286 536
UAutomizer 5666 3909 2993 11074 3334 654 4762 29710
UGemCutter 3144
UKojak 4935 2939 0 8878 0 300 3848 12872
UTaipan 6007 3711 2593 10736 0 288 4695 20244
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MLB 579
SWAT 508
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CPALockator∅ -4967
Crux∅ 2133 608
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Gazer-Theta∅

GDart-LLVM∅

Graves-CPA∅ meta 4041 -670 -820 4508
Infer∅ -96489 -8970 -76213 -32987
Lazy-CSeq∅ -15153
LF-checker∅ 396
Locksmith∅

PeSCo-CPA∅ meta 6269 -1598 2435 16328
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PredatorHP∅ 4733
VeriAbs∅ 11012
VeriAbsL∅ 11224
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COASTAL∅ -3960
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Figure 1: Quantile plot for the category
C-Overall.

Ranking

Table 5: Overview of the top-three verifiers for each
category; measurements for CPU time rounded to
two significant digits.

Rank Verifier Score CPU Solved Unconf. False Wrong
Time Tasks Tasks Alarms Proofs
(in h)

ReachSafety (11268 tasks, max. score 17860)
1 CPAchecker 10368 150 6653 230 2
2 ESBMC-kind 8717 69 6830 599 14
3 CPV 7755 160 6235 438 27
MemSafety (4042 tasks, max. score 6409)
1 CPAchecker 4892 18 3818 1
2 Symbiotic 4479 2.3 3671 0 1
3 UAutomizer 3909 37 2280 2 1
ConcurrencySafety (3175 tasks, max. score 5733)
1 Deagle 4604 3.1 2500 38 1 4
2 Dartagnan 3385 17 2012 30 3 3
3 UGemCutter 3144 50 1805 48
NoOverflows (8211 tasks, max. score 13297)
1 UAutomizer 11074 68 6724 13
2 UTaipan 10736 74 6622 11 1 2
3 UKojak 8878 54 5910 2
Termination (2328 tasks, max. score 4079)
1 Proton 3685 24 1942 159 1
2 UAutomizer 3334 18 1667 4
3 AProVE 2219 32 1006 43
SoftwareSystems (4329 tasks, max. score 7131)
1 CPAchecker 2178 30 2022 55
2 Mopsa 2086 20 2212 0
3 Symbiotic 1822 6.1 1487 231 1
FalsificationOverall (30758 tasks, max. score 10675)
1 CPAchecker 6999 100 7100 67 2
2 Symbiotic 6459 28 6379 37
3 Bubaak 5565 18 5739 236 9
Overall (33353 tasks, max. score 55561)
1 UAutomizer 29710 270 16 677 196 8
2 CPAchecker 26786 240 20 506 372 6 1
3 Symbiotic 20691 63 14 324 628 3
JavaOverall (673 tasks, max. score 926)
1 Java-Ranger 676 5.7 491 13 1
2 JBMC 628 0.32 430 91
3 GDart 627 2.1 460 15

Score Schema
Table 6: Scoring schema for SV-COMP 2025 (un-
changed from 2021)

Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found

and a validator confirmed the result based on a witness
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
True incorrect −32 Incorrect program reported as correct (wrong proof)

Reference
Report
D. Beyer. State of the art in software verification and
witness validation: SV-COMP 2025. In Proc. TACAS,
LNCS . Springer, 2025
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CPV: A Circuit-Based Program Verifier
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Motivation

HWMCC [2]
(Input: Btor2 circuit)

ABC [5], AVR [10], . . .

SV-COMP [1]
(Input: C program)

Applicable?

Software Architecture

C prog. Instrumentor C’

Transition-rel.
encoder (Kratos2 [11])Spec. TR-based

system (VMT [7])
Transition-func.

encoder
Word-level circuit

(Btor2 [13])

Frontend: Task Translation

Btor2

bit-blaster
(Btor2Aiger)

Aiger [3]

Word-level checker
(AVR, Pono)

Bit-level checker
(ABC, rIC3)

Managed by CoVeriTeam

Btor2
witness

Witness
translator SV witness

Verdict

Backend: Model Checking

Try CPV!

gitlab.com/sosy-lab/
software/cpv

TACAS 2024 [6]

Strategy for SV-COMP 2025

Circuit
AVR

KI [14]
AVR

PDR [9]
ABC

IMC [12]
ABC

PDR [8]

if Btor2-to-Aiger translation succeeds

AVR
BMC [4]

Evaluation Results at SV-COMP 2025
5 3rd place in ReachSafety-Overall, including
5 1st in ReachSafety-BitVectors and -ECA
5 2nd in ReachSafety-Hardware and -ProductLines
5 3rd in ReachSafety-Combinations and -Hardness
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Summary
• Sequential circuits can serve as an intermedi-

ate representation for software verification.
• Offer different encoding options.
• Leverage powerful word- and bit-level hard-

ware model checkers as backend.
• Perform competitively against established

verifiers in SV-COMP.
• Ongoing work:

– Support more verification properties (e.g.,
no-overflow and termination)

– Export correctness witnesses
– Apply circuit optimization to improve the

performance of verification
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SV-COMP Benchmark:
Verifying Intel TDX Module
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1LMU Munich 2National Taiwan University

Intel Trust Domain ExtensionsGuest-Host Communication Interface (GHCI) Specification for Intel® TDX 1.5 

TD-VMM Communication 

Ref. # 348552-004US  7 

5

Intel TDX aware Host VMM

Host VMM managed access 
control, enhanced with MKTME

Intel TDX Module managed access control,  
leveraging MKTME and Secure EPT

Intel TDX Module
(uses Intel TDX ISA)
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Drivers
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Figure 2-1: Components of Intel® Trust Domain Extensions 

2.2 TD-VMM-Communication Overview 

TD-VMM communication can occur via either asynchronous or synchronous (instruction) VM 

exits.  In response to synchronous (instruction) VM exits, Intel TDX [3] is designed to generate 

a Virtualization Exception (#VE) [1] for instructions the TD would be disallowed to invoke.  The 

TD-guest software may respond by using the Intel TDX-provided information directly and/or 

after further decoding of the instruction that caused the #VE.   

The TD response must occur via a TDCALL instruction [2] requesting that the host VMM 

provide (untrusted) services.  Ultimately, the VMM’s goal is to 1) receive the service request via 

a SEAMRET invoked by the Intel TDX module, 2) complete the service requested, and 3) 

respond to the TD via SEAMCALL[TDH.VP.ENTER] to re-enter the TD.   

This document describes the mechanisms and ABI for this interaction in various expected 

scenarios.  

Source: Fig. 2-1 in Intel TDX Module v1.5 Base Arch. Spec. [2]

ABI Specifications
• TDs and VMM communicate through Application Binary Interfaces
• Goal: Verify TDX ABIs (implemented in C + assembly) adhere to the

specification under all inputs

 Intel TDX Application Binary Interface (ABI) Reference 348551-003US 

November 2023 . Page 185 of 329 
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5.3.36. TDH.MNG.CREATE Leaf 

Create a new guest TD and its TDR root page. 

Table 5.145:  TDH.MNG.CREATE Input Operands Definition 

Operand Description 

RAX SEAMCALL instruction leaf number and version, see 5.3.1 

Bits Field Description 

15:0 Leaf Number Selects the SEAMCALL interface function 

23:16 Version Number Selects the SEAMCALL interface function version 

Must be 0 

63:24 Reserved Must be 0 

RCX The physical address of a page where TDR will be created (HKID bits must be 0) 

RDX Bits Name Description 

15:0 HKID The TD’s ephemeral private HKID 

63:16 Reserved Reserved:  must be 0 

 

Table 5.146:  TDH.MNG.CREATE Output Operands Definition 5 

Operand Description 

RAX SEAMCALL instruction return code – see 5.3.1 

Other Unmodified 

 

Leaf Function Description 

Note: The description below is provided at a high level.  Actual details, order of checks, returned status codes, etc. may 
vary. 

TDH.MNG.CREATE creates a TDR page which is the root page of a new guest TD. 10 

Cache Flush: Before calling TDH.MNG.CREATE, the host VMM should ensure that no cache lines associated with the 
new TDX physical page are in a Modified state, as described in the [Base Spec]. 

To understand the table and text below, please refer to the [TDX Module Base Spec] chapter discussing general aspects 
of the Intel TDX Module API. 

Table 5.147:  TDH.MNG.CREATE Operands Information Definition 15 

Explicit/ 
Implicit 

Reg. Ref 
Type 

Resource Resource 
Type 

Access Access 
Semantics 

Align 
Check 

Concurrency Restrictions 

Operand Contain. 
2MB 

Contain. 
1GB 

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared 

Implicit N/A N/A KOT KOT N/A Hidden N/A Exclusive N/A N/A 

 

In addition to the explicit memory operand checks per the table above, the function checks the following conditions: 

1. The TDR page metadata in PAMT must be correct (PT must be PT_NDA). 
2. The value of the specified HKID must be in the range configured for TDX. 

Example: Specification of ABI TDH.MNG.CREATE [1]
Defining Verification Tasks

1 - name: tdh_mng_create__requirement__expected
2 target :
3 filename : formal / harness / tdh_mng_create_harness .c
4 method : tdh_mng_create__valid_entry
5 before_target :
6 - filename : formal /src/ initialization .c
7 method : init_tdx_general
8 - filename : formal /src/ initialization .c
9 method : init_vmm_dispatcher

10 - filename : formal / harness / tdh_mng_create_harness .c
11 method : tdh_mng_create__common_precond
12 after_target :
13 - filename : formal / harness / tdh_mng_create_harness .c
14 method : tdh_mng_create__common_postcond
15 properties :
16 - property_file : unreach -call.prp
17 expected_verdict : true

Verification Harnesses
• Initialize global data and assume preconditions
• Mock access to externally defined data and model inline assembly
• Check postconditions

1 _STATIC_INLINE_ tdx_module_local_t *get_local_data(void) {
2 #ifdef TDXFV_NO_ASM
3 return &local_data_fv;
4 #else
5 uint64_t local_data_addr;
6 _ASM_("movq␣%%gs:%c[local_data],␣%0\n\t"
7 : "=r"(local_data_addr)
8 : [local_data] "i"(offsetof(
9 tdx_module_local_t , local_data_fast_ref_ptr )));

10 return (tdx_module_local_t *) local_data_addr;
11 #endif
12 }Nondet Initialization of struct

Havoc memory: by assigning a nondeterministic value to each byte
Havoc object: by nondeterministically initializing each field of the type

(if a field is a non-primitive type, recursively initialize it)
Verifier builtin: e.g., __CPROVER_havoc_object in CBMC

1 void _NONDET_struct_tdvps_t(tdvps_t* dest) {
2 _NONDET_custom_type(dest , sizeof(tdvps_t ));
3 }
4 void _NONDET_custom_type(void* base , unsigned int size) {
5 for (int i = 0; i < size; i++)
6 *(( char*)base + i) = _NONDET_uint8t ();
7 }

Initialization by havocking memory
1 void _NONDET_struct_tdvps_s(struct tdvps_s *dest) {
2 _NONDET_struct_tdvps_ve_info_s (&((* dest). ve_info ));
3 _NONDET_array_1D_unsigned_char (&((* dest). reserved_0), 128);
4 // ... snipped ...
5 }
6 void _NONDET_array_1D_unsigned_char(unsigned char (*dest)[],
7 int dim0) {
8 for (int i = 0; i < dim0; i++)
9 (*dest)[i] = _NONDET_uchar ();

10 }
Initialization by havocking object

Contributions
• 290 tasks from 16 host-side ABIs (TDH) and 5 guest-side ABIs (TDG)
• r HarnessForge (gitlab.com/sosy-lab/software/harnessforge):

– Assembles single-file verification tasks from real-world C projects
– Slices off code irrelevant to verification tasks

• Next steps:
– Experiment with effect of different initialization strategies
– Develop more tooling to support harness generation (e.g., harness-

specific linter)
– Establish custom annotations for initializing complex types in SV-

COMP community

More Information
Intel TDX Module Verification tasks HarnessForge

This work is supported by a research gift from Intel.
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AProVE (KoAT + LoAT)
Automatic Termination Analysis of C Programs
Nils Lommen, Florian Frohn, and Jürgen Giesl

Overview
• AProVE (KoAT + LoAT) [1] is a framework to analyze termination of C Programs
• Programs are transformed into Integer Transition Systems (ITSs)
• ITSs are analyzed by our tools KoAT [2] and LoAT [3]

C
Program

LLVM
Program

Symbolic
Execution

Graph

ITS

(Non-)
Termination
by AProVE

YES

Path
in C

Program

Path
in LLVM
Program

Concrete
Execution

Path in SEG

NO + Proof

KoAT

LoAT

Figure 1: AProVE (KoAT + LoAT) for (Dis)proving Termination

Exemplary C Program

Does the following program terminate?

1 exte rn i n t _nondet ( vo id ) ;
2

3 i n t main () {
4 i n t x = _nondet () ;
5 i n t y = _nondet () ;
6

7 whi l e ( x < y ) {
8 x = 3∗x ;
9 y = 2∗y ;

10 }
11 r e tu rn 0 ;
12 }

LLVM Program
• C program is compiled into LLVM code using

Clang.
• LLVM fragment of the loop body:

1 %10 = load %1 # load x
2 %11 = mul 3 %10 # mul t i p l y x by 3
3 s t o r e %11, %1 # st o r e x
4 %12 = load %2 # load y
5 %13 = mul 2 %13 # mul t i p l y y by 2
6 s t o r e %13, %2 # st o r e y
7 br %6 # jump to loop guard

Symbolic Execution Graph (SEG) & ITS
SEG represents all possible program runs, augmented with invariants:
• Its nodes are abstract states that represent sets of actual program states
• SEG handles the heap, pointer arithmetic, and recursive data structures
• LLVM code is transformed automatically into an SEG

ITSs are a simple language for integer programs:

• Turing-complete formalism with
only integer variables over Z

• SEG is transformed into ITS
`0 `1

t0
t1 : ϕ = (x < y)
η(x) = 3 · x
η(y) = 2 · y

KoAT (Termination & Upper Time Bounds)
• Automated complexity and termination analysis of ITSs
• Alternating modular inference of runtime and size bounds
• How often can a transition be executed?
• Multiphase Linear Ranking Functions

↪→ Use SMT-solver Z3 to infer well-founded relation
• TWN-Loops

↪→ Reduce termination problem to SMT problem
Completeness for the class of so-called TWN-loops

• How large are the variables?
• Compute bounds for each change of a variable

↪→ Over-approximate the number of changes by
runtime bounds

• Use runtime bounds and closed forms of loops

LoAT (Non-Termination and more)
Features

• non-termination
• lower time bounds
• safety / unsafety

Techniques

ADCL DFS + acceleration
ABMC BFS + acceleration

TRL BFS + recurrence analysis

Non-term. via Acceleration Driven Clause Learning

• Depth-first exploration of state space
• Applies acceleration︸ ︷︷ ︸

under-approximation of the loop’s transitive closure

when a loop is encountered

• Non-term. proofs as “by-product” of acceleration
• Exploits redundancy to cut off infinite branches
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CPAchecker
A Tool for Configurable Program Analysis

Daniel Baier, Dirk Beyer, Marek Jankola, Matthias Kettl, Marian Lingsch-Rosenfeld, and Philipp Wendler

Overview

P

Program
CFA Algorithm Portfolio

CEGAR [7] IMC [4]k-Induction [2]BAM [8] CPA++ Alg. [3] . . .

Composite CPA

Abstract
Model Verdict

Witness

Predicate CPA [3]

Interval CPA

Specification CPA

Loop-Bound CPA

Value-Analysis CPA [6]

Automaton CPA

Function-Pointer CPA

Constraints CPA

Callstack CPA

SMG CPA

Location CPA

. . .
φ

Specification

CPAchecker

CPAchecker is a modern and
versatile framework for building
software-verification analyses from
well-known concepts that match
the user’s requirements. cpachecker.

sosy-lab.org

Verification
For SV-COMP 2025, we used CPAchecker 4.0 with strategy selection to
choose a parallel portfolio of analyses suitable for a given verification task.
More details can be found in our tutorial [1].

• Strategy selection chooses a parallel portfolio of analyses.
The parallel composition is denoted by the || symbol

• Support all properties and categories of C programs
• 1st place in the categories FalsificationOverall, ReachSafety,

MemorySafety, and SoftwareSystems
• 2nd place in the category Overall
• Only 7 wrong results out of 33 353 tasks (0.02 %)
• New and improved analyses for:

– Reachability
– Memory safety
– Termination

Paper [1] available here

Witness Validation
For witness validation in SV-COMP 2025, we used CPAchecker 4.0 with
strategy selection to choose (based on the input) a mature analysis. More
details can be found in our competition contribution [5].

• Strategy selection chooses a mature analysis that is suitable for a
given validation task

• Support all witness types and formats, all properties for which
witnesses exist, and all categories of C programs

• 1st place in the categories MemorySafety, Termination,
and SoftwareSystems for violation witnesses 1.0

• 2nd place in all categories for correct-
ness witnesses 2.0, most categories for
correctness witnesses 1.0, and most
categories for violation witnesses 2.0

Paper [5] available here

Verification Strategy for SV-COMP 2025
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Contributors

CPAchecker is an open-source
project, mainly developed by the
Software and Computational Sys-
tems Lab at LMU Munich, and
is used and extended by interna-
tional associates from U Passau,
U Oldenburg, U Paderborn, ISP
RAS, TU Prague, TU Vienna,
TU Darmstadt, and VERIMAG in
Grenoble, along with several other
universities and institutes.

We thank all contributors for
their work on CPAchecker.
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Modular, Highly Configurable,AutomaticModel Checker

Language Frontends

TRANSITION SYSTEM ANALYSES

Symbolic Transition System
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Liveness-to-Safety

CEGAR: COMBINED LAZY AND EAGER ABSTRACTION
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VERIFICATION WITH HORN CLAUSES
Reachability:Invariants by construction (location, loop, function)

Termination:Recurrence sets and ranking functions
Multithreading:Invariants for weakly consistent software (WiP)

Supported solvers: Z3, ELDARICA, GOLEM, . . .

ORDERING CONSISTENCY
W(x1,0)

W(y1,2)
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W(x2,1)rf

rf
po

po

po

po

• Happens-before partial orders
• Memory-Model-Aware Verification
• BMC via SMT encoding
• Supported decision procedures:

Integer Difference Logic
Step-by-step refinement
Propagator-based consistency

WSC (natively) SC (by extension) MCA (by modification)

SMT SOLVERS

Native solvers Thoroughly tested, mature integrationMinimal overhead, diverse OS-support
Broad solver supportNew API features (ex: User Propagator) JavaSMT
SMT-LIB Flexible: any solver, any versionSlower interaction

WITNESS GENERATION & VALIDATION

Witness Generation
Traceable witnesses: Proofs and counterexamples
Software: Correctness and violation witnesses
Hardware: Certificates (WiP)
CHC:Models and counterexamples
Statecharts: Traces

Test generation:CONCURRENTWITNESS2TEST
Direct SMT encoding:terminationWitness Validation

COMPETITIONS
SV-COMP Since 2022Concurrency focus3 configurations
Since 2023Goldmedal (array) CHC-COMP

HWMCC Planned
AIGER (bit-level)

BTOR2 (word-level)

PORTFOLIO
Dynamic Portfolio withAlgorithm Selection
Push-button verificationwithout FM expertise
Based on theoreticalknowledge andempirical experience

PROPERTIES
(Timed) state reachabilityLTL properties

Signed integer overflow Array under- and overindexing
Dynamic memory safetyData races

Liveness (incl. termination) Concurrent reachability
Petri Net props (deadlock, safety) Memory cleanup . . .

INDUSTRIAL PROJECTS
thyssenkrupp
Verifying a steer-by-wiresystem design

CERN
PLCVERIF:verifying safety interlocks forsuperconducting test benches

NASA JPL, IncQuery
Dynamic Verification Toolkit(Model Checking as a Service)

Prolan
Railway interlockingsystem verification

ONGOING/PLANNED EXTENSIONS
CAR/DAR
Reimplementsuccessfulalgorithms in THETA

Saturation
Extensions andgeneralization of thesaturationalgorithm

Liveness
Advancedliveness-checkingalgorithms(rlive, k-fair)

PROBTHETA
ProbabilisticModel Checking inTHETA

Metasolver
OnlineSMT-solver-portfolioto handle bugs andimprove interpolants

ITP, PROOF
Betterinterpolants withCHC-solvers, andproofs instead ofunsat cores

COLLABORATIONS
SoSy-Lab Summer sojournsActive collaboration
Seminar seriesIntegrated research FBK
CERN PLCVERIFSummer students
V&V in Future CPS ADVANCE

� CODE

github.com/ftsrg/theta

 PAPERS

theta.mit.bme.hu/publications

WIKI

theta.mit.bme.hu/wiki

� JAVADOC

theta.mit.bme.hu/javadoc

MAVEN

mvnrepository.com/artifact/hu.bme.mit.theta

 DOCKER

github.com/orgs/ftsrg/packages

 RELEASE

github.com/ftsrg/theta/releases/latest

 FMTOOLS

fm-tools.sosy-lab.org/#tool-theta

Theta · Budapest, Hungary · Critical Systems Research Group · https://ftsrg.mit.bme.hu



7th Competition
on SoftwareTesting

Dirk Beyer

Participants

Table 1: Competition candidates with tool references and representing jury members; new

indicates first-time participants

Tester License Jury member Affiliation
Cetfuzz∅ Apache – –
CoVeriTest Apache M.-C. Jakobs LMU Munich, Germany
ESBMC-incr Apache C. Wei U. of Manchester, UK
ESBMC-kind Apache C. Wei U. of Manchester, UK
FDSE Apache Z. Chen National U. Defense Techn., China
Fizzer Zlib M. Trtík Masaryk U., Brno, Czechia
FuSeBMC MIT K. Alshmrany U. of Manchester, UK and

Inst. Public Admin., Saudi Arabia
FuSeBMC-AI∅MIT – –
HybridTiger∅ Apache – –
KLEEF NCSA A. Misonizhnik Independent Researcher, Neutral
KLEE∅ NCSA – –
Owi∅ AGPL – –
PRTest Apache T. Lemberger LMU Munich, Germany
Rizzer∅ Zlib – –
Sikraken new LGPL C. Meudec South East Technological U., Ireland
Symbiotic MIT M. Jonáš Masaryk U., Brno, Czechia
TracerX Apache J. Jaffar National U. of Singapore, Singapore
TracerX-WP Apache J. Jaffar National U. of Singapore, Singapore
UTestGen LGPL M. Barth LMU Munich, Germany
WASP-C∅ Apache – –
TestCov Apache M. Kettl LMU Munich, Germany

Features

Table 2: Technologies and features that the test generators
used
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Cetfuzz∅ ✓ ✓

CoVeriTest ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ESBMC-incr ✓ ✓ ✓

ESBMC-kind ✓ ✓ ✓ ✓ ✓

FDSE ✓ ✓ ✓ ✓

Fizzer ✓

FuSeBMC ✓ ✓ ✓ ✓ ✓

FuSeBMC-AI∅ ✓ ✓ ✓ ✓ ✓

HybridTiger∅ ✓ ✓ ✓ ✓

KLEEF ✓ ✓ ✓ ✓ ✓

KLEE∅ ✓ ✓ ✓

Owi∅ ✓ ✓ ✓ ✓ ✓

PRTest ✓ ✓

Rizzer∅ ✓ ✓

Sikraken new ✓

Symbiotic ✓ ✓ ✓ ✓ ✓ ✓ ✓

TracerX ✓ ✓ ✓ ✓

TracerX-WP
UTestGen ✓ ✓

WASP-C∅ ✓ ✓ ✓

Results

Table 3: Quantitative overview over all results
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Cetfuzz∅ 323 2524 2906
CoVeriTest 552 4959 5333
ESBMC-incr 679 4380 5591
ESBMC-kind 680 4323 5565
FDSE 729 5468 6435
Fizzer 736 5429 6446
FuSeBMC 994 5656 7763
FuSeBMC-AI∅ 853 4077 6228
HybridTiger∅ 438 3866 4193
KLEE∅ 804 3065 5434
KLEEF 969 5734 7692
Owi∅ 281 2462 2677
PRTest 211 3191 2764
Rizzer∅ 608
Sikraken new 2469
Symbiotic 743 4207 5793
TracerX 390 3327 3667
TracerX-WP 349 3275 3447
UTestGen 439 4393 4492
WASP-C∅ 554 2740 4094

Final Score
Figure 1: Quantile functions for category Overall.
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Ranking

Table 4: Overview of the top-three test generators for
each category (measurement values for CPU time in hours,
rounded to two significant digits)

Rank Tester Score CPU
Time

Cover-Error
1 FuSeBMC 994 75
2 KLEEF 969 9.5
3 Symbiotic 743 5.5
Cover-Branches
1 KLEEF 5734 1500
2 FuSeBMC 5656 2500
3 FDSE 5468 2200
Overall
1 FuSeBMC 7763 2600
2 KLEEF 7692 1500
3 Fizzer 6446 2100
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CoVeriTest
Cooperative Verifier-Based Testing

Marie-Christine Jakobs (m.jakobs@lmu.de)

Overview of CoVeriTest @Test-Comp

Random testing

cooperative testing

Value analysis [1]
tV

Time adaption

Predicate analysis [2]
tP

program


covered

open

coverage property

test goals

Mutationtest suite

cov
ered

goals covered goals
initinit

defines

test case

test case
original and mutated

test cases

test case

Implemented in https://cpachecker.sosy-lab.org/

Test-Case Generation with CoVeriTest’s Analyses

Abstraction
computation

Feasibility
check

Abstraction
refinement

Test-case
generation

<testcase>
<input>0</input>
<input>5</input>

</testcase>

Property
adaption

done

program

Property
encoding

q0 qe

g ∈
uncovered
test goals

g /∈
uncovered
test goals

test
goals

no counterexample
counter

-

ex
ample

found
spurious

feasible

property

More about CoVeriTest


D. Beyer, M.-C. Jakobs, CoVeriTest:
Cooperative Verifier-Based Testing,
FASE, Springer, 2019.


D. Beyer, M.-C. Jakobs, Cooperative
verifier-based testing with CoVeriTest,
STTT 23(3), 2021.



M.-C. Jakobs, CoVeriTest with Dynamic
Partitioning of the Iteration Time Limit
(Competition Contribution), FASE,
Springer, 2020.

Random Testing

Generation of 10 test cases with random inputs

<testcase>
<input>...</input>

...
<input>...</input>

</testcase>





random length
between 0 and 20

Each input is a a random integer from [0, 20]

Mutation of Test Cases

Per test case create 5 mutated test cases
using the following mutation per input

replacement with

same
value

random
value constant negated

value

0INT_MIN INT_MAX

50% 15% 20%
15%

12.5% 75% 12.5%

Adaption of Time Limits
Idea

• Reward past behavior of analysis
• Adaption based on relative progress pi,

i.e., goals covered by analysis in round i in
relation to all goals covered in round i
=⇒ only adapt if new goals covered

limitnew
i = 10 s +

pi

limiti
pV

limitV
+ pP

limitP

∗ 80 s

Initial limits
• Value analysis 20 s
• Predicate analysis 80 s
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TracerX: Enhancing Dynamic Symbolic Execution withWeakest Precondition &
Deletion Interpolation

Arpita Dutta1, Rasool Maghareh2, Joxan Jaffar3, Sangharatna Godboley4, and Xiao Liang Yu5

{arpita, joxan, xiaoly}@comp.nus.edu.sg1,3,5, sajjadrsm@gmail.com2, sanghu@nitw.ac.in4

School of Computing, National University of Singapore, Singapore1,3,5, Lemurian Labs, Toronto, Canada2, National Institute of TechnologyWarangal, India4

TracerX Framework

KLEE

TracerX Interpolant
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SMT Solver
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Annotations

C
CPP
ObjC Test Cases

Statistics

Figure 1. The overall architecture of TracerX

Highlights

TracerX is Dynamic Symbolic Executor (DSE) which is built upon KLEE [1].

The major advantage of DSE is its path-by-path exploration of the program execution space.

However, this often leads to the path explosion problem.

To address this issue, a method of abstraction learning has been used. The key step here is the

computation of an interpolant to represent the learned abstraction [2].

We use two different approaches of interpolant generation viz., 1. Deletion Interpolation [3] and 2.

Weakest Precondition (WP) Interpolation [4]

Deletion Interpolation (TracerX-Del) is our more stable and mature system and is briefly discussed

in [3].

Here, we present the Weakest Precondition (WP) Interpolation approach for TracerX, i.e.,

TracerX-WP.

From KLEE (No Interpolation) to TracerX (With Interpolation)

Forward Symbolic Execution to find feasible paths (Similar to KLEE).

Intermediate execution states preserved (Unlike KLEE).

Half interpolant aka (PATH Interpolants) are generated during backward tracking and Full

interpolants aka (TREE Interpolants) are generated by merging the half interpolants.

Full interpolants used for subsumption at similar program points.

TracerX uses information from already traversed subtree to prune other subtrees.

Figure 2. Exploration of Symbolic Execution Tree in Non-pruning DSE vs. Pruning DSE

Symbolic Execution Tree with Interpolation

<1a>

<2a>

<3a> <4a>

<5a> <5b>

<6a>

<8a>

<9a>

<11a>

x=x+9

<10a>

<11b>

x=x+14

<7a>

<8b>

x=0

x=x+3 x=x+2

x=x+5 x=x+7

Consider this program:

x = 0;
if (b1) x += 3 else x += 2
if (b2) x += 5 else x += 7
if (b3) x += 9 else x += 14
assert(x <= 24)

DFS traversal.

Without interpolation: The full tree is

traversed.

With interpolation:
1. 〈8b〉 context contains x = 10. It is subsumed with the

tree interpolant from 〈8a〉: x ≤ 10.
2. 〈5b〉 context contains x = 2. Subsumed with the tree

interpolant from 〈5a〉: x ≤ 3.
3. Big subtree traversal is avoided.

Interpolation: Weakest Precondition

Ideal interpolant is the weakest precondition (WP) of the target. Unfortunately, WP is intractable

to compute, which means it is difficult or impossible to find an exact solution.

For example, in the above code snippet: assume (not(b1∧¬b2∧¬b3)).
Hence, the WP before the first if-statement is:

WP is: b1 −→ (¬b2 ∧ b3 ∧ x ≤ 7) ∨ (b2 ∧ x ≤ 4)
¬b1 −→ x < 3
Essentially, WP is exponentially disjunctive. This means that any one of the conditions can be

satisfied for the target to be reached. (As shown here)

One way to approximate WP is to use a conjunctive approximation, which involves expressing the

WP as a conjunction of simpler conditions (Challenge is to obtain a conjunctive approximation).

Approximation ofWeakest Precondition

A Path is a sequence of assignments and assume instructions:

1. Interpolant of Assignment instruction:
wp(inst, ω) = · · · inverse transition of inst over ω
Implemented at LLVM IR level: LD/ST, add, sub, cmp, cast, GEP, etc.

e.g. ω : x ≤ 15 and inst : x = z + 2, then wp(inst, ω) : z ≤ 13
2. Interpolant of Assume instruction (C is incoming Context):

{C} assume(B) {ω}
WPApproximation: find C̄ to replace C

ABDUCTION PROBLEM !!!

Following algorithm is the heart of TracerX:

1. We compute finest partition so that var(Ci) ∗ var(Cj) s.t. i 6= j: {C1 ∗ C2 ∗ C3 ∗ ... ∗ Cn} assume(B)

{ω1 ∗ ω2 ∗ ω3 ∗ ... ∗ ωm} (∗ is as in separation logic).

2. Bunch Ci into three:

Target independent: The Ci which are separate from B and ω.
Action: Replace Ci with true, i.e. remove Ci.

Guard independent: Consider Cgi ≡ Ci s.t. Ci ∗ B; and, ωgi ≡ ωj s.t. B ∗ ωj.

Action: Replace Cgi by ωgi.

Remainder of the Ci: We do not capture exact WP for this group.

e.g. {z == 5} assume(x > z − 2) {x > 0} (Here, z > 2 is the WP)

Action: No change to Ci, i.e. keep Ci.

KLEE [1] v/s TracerX-Del [3] v/s TracerX-WP [4]

Consider this program; here, function f(N), returns the sum of the first N natural numbers.

int counter=0;
char input[N+1];
klee_make_symbolic(input,(N+1)*
sizeof(char),"input");
for (int i=0;i<=N; i++){

if(input[i]==B)
counter=counter+1;

else
counter+=i;

}
klee_assert(counter!=f(N)+1);

KLEE suffers from path explosion and hits the

timeout for N=17.

Both TracerX-Del and TracerX-WP scale up to

N=50 [timeout=600 secs for each tool]

Clear gap in the number of subsumed paths

between TracerX-Del and TracerX-WP.

TracerX-WP generates better interpolants than

TracerX-Del for subsumption.

Reason: TracerX-Del generates interpolants as a

subset of the incoming context whereas

TracerX-WP generates interpolants from the

weakest precondition of a path.
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Experimental Results

Data set: All C-programs from RERS-2012 Challenge [6].

Total targets: 1159

All three systems KLEE [1], CBMC [5] and TracerX-WP [4] are run for 3600 seconds

Observations:

1. TracerX-WP able to detect 348 targets, while KLEE and CBMC are detected 245 and 117 targets

respectively.

2. All the targets reached by TracerX-WP are super set of targets covered by CBMC and KLEE.

3. TracerX-WP is 29.59x faster than KLEE and 66.37x faster than CBMC.

Figure 3. Targets detected by the tools Figure 4. Speedup obtained by TracerX-WP
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