ETAPS Poster Book

Collection of posters presented at ETAPS 2024
Luxembourg, 6-12 April 2024

ESOP 2024 Posters

Efficient Matching with Memoization for Regexes with Look-around and Atomic Grouping (ESOP'24)

Hiroya Fujinami ${ }^{1,2}$, Ichiro Hasuo ${ }^{1,2}$
\section*{ReDoS, efficient and extended regex matching}

1,2 $\quad 1$ National Institute of Informatics, Tokyo, Japan
${ }^{2}$ SOKENDAI (The Graduate University for Advanced Studies), Japan

Catastrophic backtracking and ReDoS

ReDoS: a vulnerability by regex matching

- Depth-first matching can lead to catastrophic backtracking.

Catastrophic backtracking is non-linear time backracking.

- Catastrophic backtracking is the reason for ReDoS (Regular Expression Denial of Service). For $w=" a b b^{n n}=" a b \ldots a b a b a b "$,

Requirements for matching implementation
"Linear-time" and "easy to support extensions"

- A regex matching implementation we need is

Worst-case time complexity	To support extensions (look around, atomic grouping)
linear	Easy
$O(\|w\|)$	

- Linear-time matching can be achieved by breadth-first matching.
- However, studies about extensions in breadth-first matching are few. In particular, atomic grouping has not been well studied.
- Then, we will introduce depth-first matching with memoization [Davis et al. S\&P'21].

Memoization for regex matching

Memoization

Memoization and regex matching

Memoization is a programming technique
that makes recursive computations more efficient
by recording arguments and the corresponding return values and reusing them.
We can define a depth-first matching algorithm as a recursive function by the following signature (We show the entire definition later.)

Match $_{\mathscr{A}, w}: Q \times \mathbb{N} \rightarrow\{$ Failure, Success (i) for $i \in \mathbb{N}\}$

- Therefore, we can apply memoization to depth-first matching.

Range of memoization tables

Efficient memoization

Match $_{\mathscr{A}, w}: Q \times \mathbb{N} \rightarrow\{$ Failure, $\operatorname{Success}(i)$ for $i \in \mathbb{N}\}$

- The type of memoization tables for Match is naively

$$
M: Q \times \mathbb{N} \rightharpoonup\{\text { Failure, Success }(i) \text { for } i \in \mathbb{N}\}
$$

- The previous study [Davis et al., S\&P '21] shows that recording only failures is sufficient for (non-extended) regex.

$$
M: Q \times \mathbb{N} \rightharpoonup\{\text { Failure }\}
$$

- However, this optimized memo. table type does not work with extended regex. We will show examples of that later.

Memoization for regex extensions (look-around and atomic grouping)

A DENOTATIONAL APPROACH TO RELEASE/ACQUIRE CONCURRENCY

Authors: Yotam Dvir, Ohad Kammar, Ori Lahav

Moggi semantics effects denote monads

[Moggi 1991]

[BHN 2016]

Brookes semantics traces denote behaviors
[Brookes 1996]

[JPR 2012]

Relaxed memory weakly consistent concurrent shared state

GOAL Moggi-style Brookes semantics for the Release/Acquire relaxed memory model
Linear traces for a
decentralized model

NEW CHALLENGES ABOUND

First-class parallelism with causal propagation

More abstract and nuanced traces

More closure rules

Trace-based Denotational Semantics [Brookes 1996] Sequences of guarantees to/from the environment

Monad-based Denotational Semantics [Moggi 1991] Modular framework for effectful semantics
$\llbracket(\mathrm{k}:=1 ; \mathrm{m}:=1)\|\langle\mathrm{m} ?, \mathrm{k} ?\rangle \rrbracket=\llbracket \mathrm{k}:=1 ; \mathrm{m}:=1 \rrbracket \mid\| \llbracket\langle\mathrm{m} ?, \mathrm{k} ?\rangle \rrbracket$ $=(\llbracket \mathrm{k}:=1 \rrbracket\rangle \xlongequal{=}$ sequencing denotes monadic bind $\left.\llbracket \mathrm{m}:=1 \rrbracket) \|(\llbracket \mathrm{m} ? \rrbracket\rangle=\lambda v_{\mathrm{m}} \cdot \llbracket \mathrm{k} ? \rrbracket \rrbracket{ }^{\circ}=\lambda v_{\mathrm{k}} \cdot\left\langle v_{\mathrm{m}}, v_{\mathrm{k}}\right\rangle\right)$

Built-in: higher-order functions \& structural reasoning, e.g.
K effect-free $\Longrightarrow \llbracket$ if K then $(M ; N)$ else $\left(M ; N^{\prime}\right) \rrbracket=\llbracket M ;$ if K then N else $N^{\prime} \rrbracket$

$\begin{aligned} \llbracket M \rrbracket \geq \llbracket K \rrbracket \Longrightarrow \end{aligned}>M \rightarrow K$

Release/Acquire Interleaving Semantics [KHLVD 2017] Fragment of the C/C++ model of causal propagation
Memory: msgs on timelines | View: accessible memory | Threads store/load views
$(\mathrm{k}:=1 ; \mathrm{m}:=1) \|\langle\mathrm{m} ?, \mathrm{k} ?\rangle \quad$ Impossible outcome: $\mathrm{m} ? \rightarrow 1 \mathrm{k} ? \mapsto 0$

RA state invariants, e.g.
view σ point to $\mathrm{msg} \nu \Longrightarrow \nu$.view $\leq \sigma$
Admissible step: ADvance (pretend to load)

$\tau \in \llbracket M \rrbracket \stackrel{\tau}{ } \stackrel{\star}{\longrightarrow} \pi / \Rightarrow \llbracket M \rrbracket$
$\star \in\{\mathrm{St}, \mathrm{Mu}, \mathrm{Rw}, \mathrm{Fw}, \mathrm{Ti}, \mathrm{Ab}, \mathrm{Di}\}$
$\left(\alpha \xi_{1} \omega \therefore r_{1}\right) \in P_{1}$
$\left(\alpha \xi_{2} \omega . \therefore r_{2}\right) \in P_{2} \quad \xi \in \xi_{1} \| \xi_{2}$
$\left(\alpha \xi \omega \therefore\left\langle r_{1}, r_{2}\right\rangle\right) \in P_{1}| | \mid P_{2}$

Stutter (St) propagates reliance as a guarantee

$$
\begin{aligned}
& \xi \eta \xrightarrow{\mathrm{St}} \underset{\xi\langle\mu, \mu\rangle \eta}{\downarrow} \\
& \xi\langle\mu, \varrho\rangle\langle\underset{\sim}{\varrho}, \theta\rangle \eta \xrightarrow{\mathrm{Mu}} \xi\langle\mu, \theta\rangle \eta \\
& \text { Mumble (} \mathrm{Mu} \text {) omits a guarantee and relies on it internally }
\end{aligned}
$$

REWRITE
4 Concrete
Forward (Fw) weakens the guarantee of final accessibility

3 abstract RULES

Rewind (Rw) strengthens reliance on initial accessibility With only the Concrete rules the traces have an operational interpretation Challenge: non-operational traces Solution: percolate ABSTRACT rewrites out to induct
k :
less accessibility after reading

A denotational semantics for Release/Acquire based on linear traces that is:

* Standard (monad base, truly compositional)
* Adequate (refinements are sound)

Abstract (supports known transformations)

[^0]
FASE 2024 Posters

VerCors
 Verification of Concurrent and Distributed Software

Problem

Concurrency in systems can cause subtle bugs that are difficult to detect. As a result, concurrent systems are notoriously difficult to build. To help build correct software, we develop VerCors, a tool for the verification of concurrent and distributed software.

How does it work?

- Specification describes the intended behaviour of the system
- The user provides the program code and specifications to VerCors
- VerCors determines whether the program is correct w.r.t. the specification using logical inference
- VerCors supports multiple languages including Java, C, CUDA and OpenCL!

Achievements

- Verified Parallel Nested DFS, an important verification algorithm
- Case study with Technolution to detect bugs in their tunnel control software
- VeyMont: Given a verified program, generate a correct parallelised version
- Alpinist: Automatic transformation of specifications for GPU optimisations
- VeSUV: Automatic encoding of embedded systems designs written in SystemC into PVL

What's next?

- Extend LLVM verification support with the Pallas project
- Generate specifications
- Apply VerCors to embedded \& industrial systems
- Improve usability and scalability of the approach

Want more?

 Scan me! utwente.nl/vercors

Current collaborators

Marieke Huisman (Project lead), Lukas Armborst, Petra van den Bos, Pieter Bos, Paula Herber, Robert Mensing, Robert Rubbens, Alexander Stekelenburg, Ömer Şakar, Philip Tasche
Funding projects

8

Monitoring the future of Smart Contracts

Margarita Capretto, Martín Ceresa, and César Sánchez
Contact: firstname.lastname@imdea.org

Smart Contracts

 ÝbYxxz" af wzdhhrf dî

Problem

Solution: Future monitors

Runtime Verification

Monitors Hierarchy

Present	Future
4vaYv>zxn̈z\#̇í	
$\begin{gathered} \text { > @ühzx"¥̌b" } \\ \text { wzxn̈z\#\#é } \end{gathered}$	

Example: Multitransaction Flash Loan

 Current blockchains

*zwwñ n̄ Yxd ¥尹" "nfi bvifx"
Violates safety

Violates progress

Future monitors 酉

FoSSaCS 2024 Posters

A Resolution-Based Interactive Proof System for UNSAT

Philipp Czerner, Valentin Krasotin, Javier Esparza
\{czerner, krasotin, esparza\}@in.tum.de
Technical University of Munich

Efficient Certification for UNSAT

Full verification (proof of correctness for all inputs) is impractical for state-of-the-art SAT solvers. Certification instead checks the output as it is being produced. To be practical, the certificate checker must be efficient.
Polynomially-sized non-interactive certificates do not exist for problems outside NP. For UNSAT, extended resolution proofs are used in practice. However, these can be exponentially long w.r.t. the input.

Goal: Fast Certification via IP = PSPACE

The famous $\mathrm{IP}=\mathrm{PSPACE}$ breakthrough in complexity theory $[1,2]$ proves existence of efficient (i.e. polynomial-time) certification through interactive protocols (IPs) for any PSPACE problem, e.g. for UNSAT. But their algorithm to generate the interactive certificates is impractical. We try to adapt existing decision procedures in automated reasoning to also generate interactive certificates. The overhead of the interactive protocol must be bounded, compared to just executing the decision procedure.

Interactive Protocols

Polynomial Verifier checks claims of unbounded, but untrusted, Prover

Davis-Putnam Procedure [3]

A decision procedure for SAT:
$\rightarrow 1$ Pick a variable x
2 Add all resolvents w.r.t. x
$\boxed{~}$ Remove all clauses with x or $\neg x$

$$
\bigwedge_{i}\left(x \vee a_{i}\right) \wedge \bigwedge_{j}\left(\neg x \vee b_{j}\right) \wedge c \quad \bigwedge_{i, j}\left(a_{i} \vee b_{j}\right) \wedge c
$$

Competitive IP

An IP is competitive with an algorithm A if

$$
\frac{\operatorname{time}(\operatorname{IP}, x)}{\operatorname{time}(A, x)} \in \mathcal{O}(\text { poly }|x|) \quad \forall \text { inputs } x
$$

Intuitively, instances that are practical to solve with A can be practically certified with the IP.

Exploiting Arithmetisation

Arithmetisation is a fundemental technique for designing IPs. The idea is to assign a polynomial to each formula that extends its binary behaviour.

$$
\begin{aligned}
\text { true } & \rightarrow 1 & \varphi_{1} \wedge \varphi_{2} & \rightarrow p_{1} \cdot p_{2} \\
\text { false } & \rightarrow 0 & \varphi_{1} \vee \varphi_{2} & \rightarrow p_{1}+p_{2}-p_{1} p_{2} \\
x & \rightarrow x & & \neg x
\end{aligned}>1-x .
$$

Prior IPs use a straightforward arithmetisation, e.g. the one shown above. However, it is unclear how to apply it to the Davis-Putnam Procedure. Instead, we construct a competitive IP using a non-standard arithmetisation:

$$
\begin{aligned}
\text { true } & \rightarrow 0 & \varphi_{1} \wedge \varphi_{2} & \rightarrow p_{1}+p_{2} \\
\text { false } & \rightarrow 1 & \varphi_{1} \vee \varphi_{2} & \rightarrow p_{1} \cdot p_{2} \\
x & \rightarrow 1-x & \quad \neg x & \rightarrow x^{3}
\end{aligned}
$$

time

Our approach enables certification with polynomial time verification cost

A Framework for Competitive IPs

We give a theoretical framework to construct competitive IPs for certain classes of UNSAT algorithms. This framework gives sufficient conditions that an arithmetisation is compatible with an algorithm. Given a compatible arithmetisation, we construct a competitive IP in a generic fashion.

A macrostep algorithm transforms the formula by applying a polynomial number of macrosteps.

$$
\varphi \xrightarrow{M_{1}} \varphi^{\prime} \xrightarrow{M_{2}} \varphi^{\prime \prime}-\cdots \rightarrow \text { false }
$$

Each step maps the formula, s.t. $\varphi \equiv \varphi^{\prime} \equiv \ldots \equiv$ false

Open Questions

- Implement further optimisations within this framework
- Adapt different decision procedures (e.g. DPLL)
- Exploit cryptographic assumptions
- Use multiple provers to certify resolution proofs directly

An arithmetisation \mathcal{A} is compatible with a macrostep algorithm if for every macrostep M there is a corresponding mapping on polynomials P_{M}.

The mapping P_{M} must additionally commute with partial evaluation Π_{σ} and remainder w.r.t. a prime q.

Here, $P_{M}(p)=p[x / 0] \cdot p[x / 1]$ works, but it fails for clauses without x. We use $P_{M}\left(a_{3} x^{3}+a_{1} x+a_{0}\right)=-a_{3} a_{1}+a_{1}+a_{0}$ instead, which works in general.
[1] Lund, Fortnow, Karloff, Nisan, 1990
[2] Shamir, 1992 [3] Davis, Putnam, 1960

Marek Jankola
marek.jankola@sosy.ifi.lmu.de
LMU Munich, Munich, Germany

Jan Strejček
strejcek@fi.muni.cz
Masaryk University, Brno, Czechia

LMU

IIUIII
FI

Motivation

Tight automata are useful in
-LTL model checking for shortest counterexamples

- LTL synthesis for maximally satisfying strategies

Previous constructions [4, 3] of tight Büchi automata (BA) from Büchi automata have large raise of states in the worst case and there is a big gap between the lower and the upper bound. In the following, n is the number of states of an input automaton.

$$
2^{\Omega(n)} \longleftrightarrow \mathcal{O}\left((\sqrt{2} n)^{2 n}\right)
$$

Preliminaries

-Lasso-shaped word $u=v w^{\omega}$ is an infinite word composed from a finite prefix (stem) $-v$ and from infinite repetition of a finite word (loop) - w.
-Each lasso-shaped word has infinitely many stems and loops, we define $|\operatorname{minSL}(u)|=\min \left\{|v w| \mid u=v w^{\omega}\right\}$.

Example

$u=c b(a b a b)^{\omega}=c(b a)^{\omega} \Rightarrow|\operatorname{minSL}(u)|=|c|+|b a|=3$
-Transition-based Büchi automaton (TBA) is a type of ω automaton that contains a set of accepting transitions (we depict them with the blue mark \bullet) and accepts an infinite word if there is a run (a sequence of transitions) over the word that passes an accepting transition infinitely often.

Definition: Tight Transition-Based Büchi Automata

A TBA \mathcal{A} is tight iff for each lasso-shaped word $u \in$ $L(A)$ there exists an accepting lasso-shaped run ρ satisfying $|\operatorname{minSL}(u)|=|\operatorname{minSL}(\rho)|$.

TBA \mathcal{A} : not tight
$\rho=p_{0} \xrightarrow{c} p_{1} \xrightarrow{a} p_{2} \xrightarrow{b}\left(r_{0} \xrightarrow{a} r_{1} \xrightarrow{b} r_{2} \xrightarrow{a} r_{3} \xrightarrow{b} r_{0}\right)^{\omega}$ $|\operatorname{minSL}(\rho)|=7 \neq 3=\left|\operatorname{minSL}\left(c(a b)^{\omega}\right)\right|$

\square Main Results

We prove the following theorems:

- Upper Bound: For each TBA with n states, we can construct an equivalent tight TBA with at most $\mathcal{O}\left(n!\cdot n^{3}\right)$ states.

- Tight TBA \rightarrow Tight BA: For each tight TBA with n states, we can construct an equivalent tight BA with at most $2 n$ states.
- Lower Bound: For each $n>0$, there is a BA with $2 n+1$ states such that every equivalent tight TBA has at least $\sum_{k=1}^{n} \frac{n!}{(n-k)!}$ states.
- New Boundaries: The resulting new boundaries for tight Büchi automata

$$
2^{\Omega(n)} \prec \Omega\left(\frac{n-1}{2}!\right) \longleftrightarrow \mathcal{O}\left(n!\cdot n^{3}\right) \prec \mathcal{O}\left((\sqrt{2} n)^{2 n}\right)
$$

- Practical reductions: Let \mathcal{A} be a tight TBA and let \sqsubseteq be a good for quotienting [1] preorder. The reduced automaton $\mathcal{A} / \sqsubseteq$ is tight.

Implementation and Evaluation

Comparison of our tool Tightener against the only known implemented algorithm CGH [4] that constructs tight Büchi automata from LTL formulas (TO=timeout). Tightener uses Spot [2] to obtain a TBA from LTL formula. We measure the number of states of the resulting automata.

References

[1] L. Clemente et al. "Efficient reduction of nondeterministic automata with application to language inclusion testing". In: Log. Methods Comput. Sci. 15.1 (2019)
[2] A. Duret-Lutz et al. "From Spot 2.0 to Spot 2.10: What's New?" In: Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part II. Ed. by S. Shoham et al. Vol. 13372. Lecture Notes in Computer Science. Springer, 2022 pp. 174-187.
[3] R. Ehlers. "How Hard Is Finding Shortest Counter-Example Lassos in Model Checking?" In: ed. by M. H. ter Beek et al. Vol. 11800. Springer, 2019, pp. 245-261.
[4] V. Schuppan. "Liveness checking as safety checking to find shortest counterexamples to linear time properties". PhD thesis. ETH Zurich, 2006

Checking History-Determinism is NP-hard for Parity Automata

Aditya Prakash
University of Warwick, UK
aditya.prakash@warwick.ac.uk

1 History-deterministic parity automata

History-determinism. Automata where nondeterminism can be resolved based on the prefix read so far. Equivalently, if Eve wins the corresponding HD game, proceeding in infinitely many rounds. In round i :

- Adam selects letter a_{i}
- Eve selects transition $q_{i} \xrightarrow{a_{i}} q_{i+1}$

Eve's winning condition: Eve's run is accepting if Adam's word is accepting.

Figure 1: An HD Büchi automaton [3] and a play of history-determinism game on it. Eve's winning strategy in the HD game is to alternate between picking left and right transitions at the state q.

2 History of complexity of checking history-determinism

- Henzinger and Piterman, 2006 [5] - Can be decided in EXPTIME
- Kuperberg and Skrzypczak, 2015 [6] - As hard as solving Parity games, PTIME for coBüchi automata
- Bagnol and Kuperberg, 2018 [1] - PTIME for Büchi automata

3 NP-hardness: reduction from 2-dimensional parity games

2-D parity games: A game arena with each edge labelled by two natural numbers, forming two parity conditions χ_{1} and χ_{2}.
Eve's winning condition: If the χ_{1} parity condition is satisfied, then the χ_{2} parity condition is satisfied.

Figure 2: A snippet of a 2-D parity game. The pentagons represent Adam's vertices and the squares represent Eve's vertices.

Chatterjee, Henzinger and Piterman [4] have shown that deciding if Eve wins a 2-D parity game is NP-hard.

Figure 3: Reduction to simulation and checking history-determinism from 2-D parity game.

- H simulates D if and only if Eve wins G.

Theorem 1. Deciding simulation between two parity automata is NP-complete. Good 2-D parity games: all paths that satisfy the χ_{2} parity condition also satisfy χ_{1}. Deciding if Eve wins a good 2-D parity game is NP-complete.
$\bullet H$ is history-deterministic if and only if Eve wins G.
Theorem 2. Checking history-determinism is NP-hard for parity automata.

4 History-deterministic automata for model checking
Language inclusion: Given parity automata A and B, is $L(A) \subseteq L(B)$?
Deciding language inclusion is PSPACE-complete for nondeterministic parity automata.
If B is HD , however, $L(A) \subseteq L(B)$ if and only if B simulates A [5].
Simulation game. The simulation game of A and B proceeds in infinitely many rounds. In round i :

- Adam selects letter a_{i}
- Adam selects transition $p_{i} \xrightarrow{a_{i}} p_{i+1}$ in A.
- Eve selects a transition $q_{i} \xrightarrow{a_{i}} q_{i+1}$ in B.

Eve's winning condition: if Adam's run in A is accepting, Eve's run in B is accepting as well.

Adam	1. a_{0}	4. a_{1}	7. a_{2}	10. a_{3}	13. a_{4}
Adam					$\text { 14. } a_{4}$
Eve	3. a_{0}				15. a_{4}

Figure 4: Order of moves in a simulation game. At the end of an infinite play, Adam constructs a word and run on that word, and Eve constructs a run on the same word as well.

Deciding simulation between two parity automata is in NP, but we show that we can do even better if B is history-deterministic.
Theorem 3. Given nondeterministic parity automaton A and HD parity automaton B, checking if $L(A) \subseteq L(B)$ can be decided in quasi-polynomial time.

5 Open: how hard is recognising HD parity automata?
For a Büchi or coBüchi automaton, one can decide history-determinism in PTIME by solving the 2-token game.
2-token game. Played between Eve and Adam, and proceeds in infinitely many rounds. In round i :

- Adam selects letter a_{i}
- Eve selects a transition $q_{i} \xrightarrow{a_{i}} q_{i+1}$
- Adam selects two transitions $p_{i}^{1} \xrightarrow{a_{i}} p_{i+1}^{1}, p_{i}^{2} \xrightarrow{a_{i}} p_{i+1}^{2}$.

Eve's winning condition: Eve's run is accepting if either of Adam's two runs are accepting.

Figure 5: Order of moves in a 2-token game. At the end of an infinite play, Adam constructs a word and Eve and Adam construct one and two runs on that word respectively.
2-token conjecture. Eve wins the 2-token game on a parity automaton A if and only if A is history-deterministic [1].
The 2-token conjecture holds for Büchi [1] and coBüchi automata [2]. Assuming that the 2-token conjecture is true, we would only obtain a PSPACE-upper bound for the problem of deciding history-determinism.
Open: Given a parity automaton A, what is the complexity of deciding if Eve wins the 2-token game of A ? What is the complexity of deciding history-determinism of A ?

References

[1] Marc Bagnol and Denis Kuperberg. Büchi Good-for-Games Automata Are Efficiently Recognizable. In FSTTCS, 2018.
[2] Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. On the Succinctness of Alternating Parity Good-For-Games Automata. arxiv, 2020.
[3] Antonio Casares, Thomas Colcombet, Nathanaël Fijalkow, and Karoliina Lehtinen. From muller to parity and rabin automata: Optimal transformations preserving (history-)determinism. arxiv, 2023.
[4] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized Parity Games. In FoSSaCS, 2007.
[5] Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In CSL, 2006.
[6] Denis Kuperberg and Michal Skrzypczak. On determinisation of good-for-games automata. In ICALP, 2015.

Symbolic Solution of Emerson-Lei Games for Reactive Synthesis

Daniel Hausmann, Mathieu Lehaut and Nir Piterman
\qquad

Overview

- Winning regions in various ω-regular games are known to be nested fixpoints
- Emerson-Lei objectives succinctly encode standard objectives.
- Zielonka trees characterize winning in Emerson-Lei games

We show how to extract a nested fixpoint from any Zielonka tree, resulting in
a symbolic fixpoint algorithm that solves Emerson-Lei games with n nodes, m edges and k colors in time $\mathcal{O}\left(k!\cdot m \cdot n^{\bar{z}}\right)$,
This generalizes previous fixpoint algorithms for Büchi, parity, GR[1], Rabin and Streett games, recovering previous upper bounds on runtime
Emerson-Lei Games

Infinite-duration zero-sum games played by two players \exists and \forall :

$$
G=\left(V=V_{\exists} \cup V_{甘}, E \subseteq V \times V, \text { col }: V \rightarrow 2^{C}, \varphi\right) \quad \varphi \in \mathbb{B}(\operatorname{GF}(C))
$$ Player \exists wins play $\pi \subseteq V^{\omega}$ in G if and only if $\operatorname{col}[\pi] \models \varphi$

Examples:

$$
\begin{array}{lr}
\varphi=\quad \text { GF } f & \text { (Büchi) } \\
\varphi=\bigwedge_{1 \leq i \leq k} \mathrm{GF} f_{i} & \text { (gen. Büchi) } \\
\varphi=\bigwedge_{1 \leq i \leq k_{1}} \mathrm{GF} p_{i} \rightarrow \bigwedge_{1 \leq j \leq k_{2}} \mathrm{GF} q_{j} & \text { (GR[1]) } \\
\varphi=\bigvee_{i \text { even }} \mathrm{GF} p_{i} \wedge \mathrm{FG} \bigwedge_{i<j \leq k} \neg p_{j} & \text { (parity) } \\
\varphi=\bigvee_{1 \leq i \leq k} \mathrm{GF} e_{i} \wedge \mathrm{FG} \neg f_{i} & \text { (Rabin) } \\
\varphi=\bigwedge_{1 \leq i \leq k}\left(\mathrm{GF} r_{i} \rightarrow \mathrm{GF} g_{i}\right) & \text { (Streett) } \\
\varphi=\bigvee_{U \in U} \bigwedge_{i \in U} \mathrm{GF} f_{i} \wedge \mathrm{FG} \bigwedge_{j \notin U} f_{j} & \text { (Muller for } \mathcal{U} \subseteq 2^{C} \text {) }
\end{array}
$$

Emerson-Lei games are determined, but not positional (e.g. Streett games).
Zielonka Trees

Tree \mathcal{Z}_{φ} with vertices X labeled by $l(X) \subseteq C$, subject to certain maximality conditions. Vertex X is green if $l(X)^{\omega} \vDash \varphi$ and red otherwise.
Require for all children Y, Y^{\prime} of X in \mathcal{Z}_{φ}
X green $\Leftrightarrow Y$ red, $l(Y) \subsetneq l(X), l(Y)$ and $l\left(Y^{\prime}\right)$ are incomparable.
Lemma: The Zielonka tree \mathcal{Z}_{φ} has at most $e \cdot|C|$! vertices

Play $\pi=v_{0} v_{1} \ldots$ induces walk ρ_{π} through Zielonka tree.

- start with v_{0} and left-most leaf in Zielonka tree;
at v_{i} and X, pick lowest ancestor Y of X s.t. $\operatorname{col}\left(v_{i}\right) \subseteq l(Y)$ and proceed with v_{i+1} and left-most leaf X^{\prime} under Y that is to right of X Dominating vertex: topmost node that is seen infinitely often in ρ_{π}
Lemma: Player \exists wins play $\pi \Leftrightarrow$ dominating vertex in ρ_{π} is green.
Zielonka Trees by Example

generalized Büchi objective

Theorem: The solution of the extracted fixpoint equation system is the winning region in the corresponding Emerson-Lei game.
Solve equation systems by fixpoint iteration to solve Emerson-Lei games with n nodes and k colors symbolically in time $\mathcal{O}\left(k!\cdot n^{\Sigma^{++}}\right)$. For simpler conditions, this recovers previous fixpoint iteration algorithms.

Extracted Fixpoint Systems by Example

generalized Büchi objective

Symbolic Reactive Synthesis
Reduction of safety and EL LTL formula $\varphi_{\text {safety }} \wedge \varphi_{\mathrm{EL}}\left(\right.$ with $\left.\varphi_{\mathrm{EL}} \in \mathbb{B}(\operatorname{GF}(C))\right)$ to symbolic game:

Check realizability in time $2^{\mathcal{O}\left(m \cdot \log m \cdot 2^{n)}\right)}$, where $n=\left|\varphi_{\text {satety }}\right|$ and $m=\left|\varphi_{\text {EL }}\right|$.

More details and results in full paper: https://arxiv.org/pdf/2305.02793.pdf

Higher-Order Mathematical Operational Semantics

Weak Applicative Similarity

Logical Predicates and Strong Normalization

 gebraic invariant relative to itself

Key Construction: Logical predicate over P

We define predicate transformer \square :
Given a program property $P, \square P$ is a canonical logical predicate, contained in P

$$
\begin{aligned}
& \text { Key Result: Induction up to } \square \\
& \text { Induction up to } \square \text { is a lightweight proof principle sound for well-behaved (relatively flat) HO Specifi- } \\
& \text { cations, which isolates the non-trivial core from the boilerplate part of the proof: } \\
& \text { ? Prove } \iota[\bar{\Sigma}(\square P)] \Longrightarrow P \\
& \text { By generalities: } \iota[\bar{\Sigma}(\square P)] \Longrightarrow \square P \text {, hence } T \Longrightarrow \square P \Longrightarrow P
\end{aligned}
$$

Key Application: Strong Normalization
$P(t)=\mathrm{SN}(t)=$ "all reductions $t \rightarrow t^{\prime} \rightarrow \cdots$ are finite"

Higher-Order Abstract GSOS
 Categorical Framework for Higher-Order Operational Semantics

Central Result: Compositionality for Free
Under certain general assumptions, \sim is a congruence

Contextual Equivalence and Step-Indexing

Ground Contextual Preorder

Ground contextual preorder/equivalence for programs of type τ w.r.t. Booleans:
$t \lesssim_{\tau}^{\text {bol }} s$ if \forall contexts $C: \tau \rightsquigarrow$ boot. $C[t] \Downarrow \Longrightarrow C[s] \Downarrow$
$t \simeq_{\tau}^{\text {bol }} s$ if \forall contexts $C: \tau \rightsquigarrow$ boot. $C[t] \Downarrow \Longleftrightarrow C[s] \Downarrow$
E.g. $f \simeq_{\tau}^{\text {boil }} \lambda x . f x$

Abstract Step-Indexed Logical Relations

For a relation $R \subseteq \mu \Sigma \times \mu \Sigma$ on programs, by transfinite recursion:

$$
\begin{aligned}
\square^{0} R & =R & & \square^{\alpha} R
\end{aligned}=\bigwedge_{\beta<\alpha} \square^{\beta} R \quad \text { for limits ordinals } \alpha
$$

[^1]

References

[1] S. Goncharov, S. Milius, L. Schröder, S. Tsampas, H. Urbat, Towards a Higher-Order Mathematical Operational Semantics, POPL 2023
[2] H. Urbat, S. Tsampas, S. Goncharov, S. Milius, L. Schröder, Weak Similarity in Higher-Order Mathematical Oprational Semantics, LICS 2023
[3] S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat, Logical Predicates in Higher-Order Mathematital Operational Semantics, FoSSaCS 2024

Stochastic Window Mean-Payoff Games

Laurent Doyen ${ }^{1}$, Pranshu Gaba ${ }^{\star 2}$, and Shibashis Guha ${ }^{2}$
${ }^{1}$ CNRS \& LMF, ENS Paris-Saclay, France
${ }^{2}$ Tata Institute of Fundamental Research, Mumbai, India, *pranshu.gaba@tifr.res.in

Setup

- Played by 2 players
- player \bigcirc (system)
- player \square (environment)
- Played on a directed graph with no deadlocks
- Vertices partitioned into $(\bigcirc, \square, \diamond)$
- Probability distributions over out-edges of \diamond
- Edges have rational payoffs, $w(e)$

Window mean-payoff objective WMP (ℓ)

Given window length $\ell \geq 1$.
A play π satisfies $\operatorname{WMP}(\ell)$ if eventually, starting from every point in π, the mean-payoff becomes non-negative in at most ℓ steps.

The objective of player \bigcirc is to satisfy $\operatorname{WMP}(\ell)$
The objective of player \square is to not satisfy $\mathrm{WMP}(\ell)$.

Gameplay

1. Place token on initial vertex $v_{\text {init }}$ -
2. If token is on \bigcirc, then player \bigcirc chooses an out-edge. If token is on \square, then player \square chooses an out-edge. If token is on \diamond, then an out-edge is chosen by the probability distribution.
3. Move token along the chosen out-edge and go to step 2.

A play is an infinite path in the arena.

Strategies

A function that reads the sequence of vertices seen so far, and returns the out-edge that the players should choose.

Decision problem

Given $0 \leq p \leq 1$, does player \bigcirc have a strategy to satisfy $\operatorname{WMP}(\ell)$ with probability at least p ?

Adversarial non-stochastic game

Game obtained by changing every \diamond to \square.

If player \bigcirc wins in the adversarial game, then she surely wins in the original game.

Arbitrary $0<p<1$

Follow value class construction as illustrated in [2].

- Guess the probability p_{v} of player \bigcirc satisfying $\mathrm{WMP}(\ell)$ from each vertex v.
- This yields a partition of vertices in the graph, called value classes.
- For each value class, check if the players almost-surely win the objective $\operatorname{WMP}(\ell) \cup$ Reach (Bnd).

Memory

The memory of a strategy is the minimum number of states required to describe the strategy.
Player 1 requires ℓ memory.
Player 2 requires $|V| \cdot \ell$ memory.

Results

For the $\mathrm{WMP}(\ell)$ objective,

- positive winning winning is in P
- almost-sure winning winning is in P
- arbitrary p is in NP \cap coNP

References

[1] K. Chatterjee, L. Doyen, M. Randour, and J-F. Raskin. "Looking at mean-payoff and total-payoff through windows"'. In: Information and Computation 242 (2015), pp. 25-52.
[2] K. Chatterjee, T. A. Henzinger, and F. Horn. "Stochastic Games with Finitary Objectives". In: MFCS. Springer Berlin Heidelberg, 2009, pp. $34-54$.

TACAS 2024 Posters

Zsófia Ádám, Dirk Beyer, Po-Chun Chien, Nian-Ze Lee, and Nils Sirrenberg
adamzsofi@edu.bme.hu, nils.sirrenberg@campus.lmu.de, \{dirk. beyer, po-chun. chien, nian-ze.lee\}@sosy.ifi.lmu.de

Presentation at TACAS 2024: 12:00, Thursday, April 11, Room: TBD

Certifying and Validating Verification

Our Motivation

- Explainable and trustworthy HW verification (HV)
- SW verification (SV) techniques for HW

Our Contributions

- A certifying HV framework using SV techniques
- A translator from SW witnesses to HW witnesses
- A witness validator for the BTOR2 HW modeling language [6]
- Complementing HV with certified results from SV

Certifying HV Using Translation and SV

BTOR2-CERT instantiates the framework with BTOR2C [1] as frontend and SW verifiers that export GraphML witnesses [2] as backend.

HW-to-SW Translation via Btor2C [1]

1 sort bitvec 8
2 sort bitvec 1
3 constd 142
4 constd 12
5 zero 1
6 state 1 ; a
7 state 1 ; b
8 input 1 ; in
9 init 164 ; a init to 2
10 init 175 ; b init to 0
11 eq 265 ; a == 0
12 eq $274 ; \mathrm{b}==2$
13 eq 283 ; in $==42$
14 and 21112
15 and $2 \quad 1314$
16 bad 15
17 one 1
18 srl 1617
19 xor 1717
20 next 1618
21 next 1719

```
extern void abort(void);
extern unsigned char nondet_uchar();
void main() {
    typedef unsigned char SORT_1;
    SORT_1 a = nondet_uchar();
    SORT_1 b = nondet_uchar();
    a = 2;
    b = 0; // Omit for unsafe version
    for (;;) {
        SORT_1 in = nondet_uchar();
        if (a == 0 && b == 2 && in == 42) {
        ERROR:
            abort();
            }
            a = a >> 1;
            b = b ^ 1;
    }
}
```

Witness Translation
 10: T $100000010 ; \mathrm{b}==2$ q2 $D o / w \quad$ @ 10: T @ $q_{3} \bigcirc o / w \quad$ @2 10: in==42 000101010 ; in $==42$ (q)

1 sort bitvec 8
2 sort bitvec 1
3 zero 1
4 one 1
5 input 1 ; state "b"
6 ugte $253 ; \mathrm{b}>=0$
7 ulte $254 ; \mathrm{b}<=1$
8 and 267

Violation Witness Validation

Correctness Witness Validation

Summary of Experimental Results

On 758 safe and 456 unsafe BTOR2 verification tasks, BTOR2-CERT achieved:

- Translation of all violation and 97% correctness witnesses,
- Effective and efficient validation vs. compared validators, e.g., LIV [4] and CPA-w2T [3], and
- Certified bugs in 8% of the unsafe tasks with CBMC [5] that HV overlooked

References

[1] Beyer, D., Chien, P.C., Lee, N.Z.: Bridging hardware and software analysis with Btor2C: A word-level-circuit-to-C translator. In: Proc. TACAS. pp. 1-21. LNCS 13994 (2023)
[2] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.: Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1-57:69 (2022)
[3] Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses: Execution-based validation of verification results. In: Proc. TAP. pp. 3-23. LNCS 10889 (2018)
[4] Beyer, D., Spiessl, M.: LIV: A loop-invariant validation using straight-line programs. In: Proc. ASE. pp. 2074-2077 (2023)
[5] Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proc. TACAS. pp. 168-176. LNCS 2988 (2004)
[6] Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector 3.0. In: Proc. CAV. pp. 587-595

Invariant Quality

Three user-defined quality levels for invariants:

- Invariant (containing all reachable states)
- Safe invariant (implying safety property)
- Safe and inductive invariant

Try Btor2-Cert!

Artifact DOI: 10.5281/zenodo. 10548597

Accurately Computing Expected Visiting Times and Stationary Distributions in Markov Chains

Hannah Mertens, Joost-Pieter Katoen, Tim Quatmann, Tobias Winkler

Expected Visiting Times (EVTs) [2]

- Describe the expected time a Markov chain spends in each state.
- Characterized as the unique solution of a linear equation system.
- Useful for obtaining reachability probabilities for multiple states, stationary distributions, and expected rewards.

Contributions

- Sound and scalable algorithms for computing EVTs.
- Optimized methods for computing stationary distributions and conditional expected rewards by leveraging EVTs.
- An implementation in Storm [1].
- An experimental evaluation.

Applications of EVTs

Reachability probabilities:

- Computing reachability probability of each BSCC reduces to EVTs [2].
- One linear equation system instead of one per BSCC.

Stationary distribution:

- Sound bounds on the stationary distribution via EVTs.
- Significantly faster than existing techniques $[3,5]$.

Conditional expected reward:

- Given the EVTs, compute the expected rewards conditioned on reaching each BSCC.
- One linear equation system rather than one per BSCC.

Uniform Distribution Generator

For a given parameter $N \geq 1$, we verify that Lumbroso's Fast Dice Roller [4] program produces a uniformly distributed output in $\{1, \ldots, N\}$ by computing the stationary distribution of the corresponding DTMC.

Approximating EVTs

Value iteration (VI):

- Characterize EVTs as the fixed point of an operator.
- Iteratively apply the operator.
- Converges to the unique fixed point in the limit, but no sound stopping criterion.
Interval iteration (II):
- Converge to the fixed point from above and below.
- Stop when the difference between under- and overapproximations is small enough
\rightsquigarrow Sound precision guarantees.

Computing Stationary Distributions via EVTs

References

[1] Christian Hensel et al. "The Probabilistic Model Checker Storm". In: Int. J. Softw. Tools Technol. Transf. 2022.
[2] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Undergraduate Texts in Mathematics. 1976.
[3] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. "PRISM 4.0: Verification of Probabilistic Real-Time Systems". In: CAV. 2011.
[4] Jérémie O. Lumbroso. "Optimal Discrete Uniform Generation from Coin Flips, and Applications". In: CoRR abs/1304.1916 (2013).
[5] Tobias Meggendorfer. "Correct Approximation of Stationary Distributions". In: TACAS. 2023.

CESAR: Control Envelope Synthesis via Angelic Refinements

Aditi Kabra
akabra@cs.cmu.edu

Jonathan Laurent
jonathan.laurent@kit.edu

Stefan Mitsch
smitsch@depaul.edu

André Platzer
platzer@kit.edu

CESAR: Formally Justified Synthesis

Characterize Solution Implicitly using

 Hybrid Systems Game Theory ...- Differential Game Logic (dGL) formalizes how two adversarial agents Angel (\odot) and Demon (${ }^{(}$) take decisions to attain win conditions
- Use agent decisions to characterize the behavior of optimal control's in a maximally difficult environmente

4

... Then Extract an Explicit Solution
Reduce dGL formulas to solution formulas in propositional arithmetic using the axioms of dGL and refinements.
Refinements transform games to be easier to reduce yet harder for the controller to win.

One-Shot Unrolling

What if the controller can only run one action for unbounded time?

Bounded Unrolling
What happens when the controller switches actions?

Evaluation: Varying Control Challenges

Benchmark
Synthesis Checking
Time (s) Time (s) Optimal $\begin{gathered}\text { Needs } \\ \text { Unrolling }\end{gathered}$

14	9	\checkmark	
20	8	\checkmark	
49	44	\checkmark	
46	8		
26	9		
49	20	\checkmark	\checkmark
20	8	\checkmark	\checkmark
26	17	\checkmark	\checkmark

Non Solvable Dynamics

CESAR automatically generates control conditions for all benchmarks.

Some benchmarks have nonsolvable dynamics, some require a sequence of clever control actions to reach an optimal solution, and some have state-dependent fallbacks where the current state of the system determines which action is "safer".

Problem

Verifying optimised parallel code is difficult because it

- uses intricate features that are hard to reason about.
- requires precise annotations that match the code, which is often harder than writing the code.

Idea

Use Halide, an existing DSL targeting the image \mathcal{G} tensor domain.

1. The code is written in an algorithm part that captures the functionality.
2. Add annotations to the algorithm.
3. Front-end approach:
a. Encode the algorithm with matching annotations.
b. Verify with VerCors.
4. The algorithm is transformed using a schedule, producing optimised C code.
5. Back-end approach:
a. HaliVer produces matching annotations for the optimised code, using similar transformations as the Halide compiler.
b. Verify the optimised code using VerCors, proving memory safety and functional correctness properties.

Results \& Future mork

Results

- 8 different algorithms.
- 23 optimisation schedules.
- Without annotation effort proves memory safety for almost all programs.
- With annotation proves functional correctness properties.
- Reduces manual annotation effort by an order of magnitude.

Future work

- Target GPUs.
- Vectorisation optimisation.
- Verify arbitrary bounds (leads to non-linear arithmetic).
- Add Axiomatic Data Types and user defined pure functions to annotation language.

Contact info

l.b.v.d.haak@tue.nl cheops. win. tue.nl/

[^2] ${ }^{1}$ Eindhoven University of Technology ${ }^{\text {U University }}$ of Twente

JPF: From 2003 to 2023

Cyrille Artho, Pavel Parízek, Daohan Qu, Varadraj Galgali, Pu (Luke) Yi

KTH Royal Institute of Technology; Charles University; Nanjing University; Belgaum; Stanford University

JPF: A bytecode analysis framework

JPF core runs in Java (on host JVM)

Beyond Testing

- only one trace
- may miss defects
- scalable

Model Checking

- all (many) traces
- finds all defects
- resource-hungry

JPF successes

- Reliability analysis of NASA software components
- Locking protocol analysis of real-time kernel
- Analysis of java.nio libraries
- Teaching concurrency in Master's courses
- Detection of flaky tests

Challenges

$$
\begin{aligned}
& \text { Native private native int encode(...) } \\
& \text { methods @MJI public int encode__Ljava_lang_... } \\
& \begin{array}{l}
\text { Bootstrap } \\
\text { methods } \\
\text { Java } \\
\text { version }
\end{array}
\end{aligned}
$$

JPF for Java 11 development

JPF for Java 11: growth in code size and test cases
O 188000 Con 186000
Thanks to Google Summer of Code!

Mata: A Fast and Simple Finite Automata Library

David Chocholatý Tomáš Fiedor Vojtěch Havlena VERIIIT Lukáš Holik Martin Hruška Ondřej Lengál Juraj Síč
Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

What is Mata

Mata is a well-engineered, fast, and simple automata library in $\mathrm{C}++$. It is maintainable and understandable. It has a simple architecture allowing a new user, a researcher, to quickly prototype new algorithms and thoroughly ptimize the final implementation. Mata targets string constraint solving, reasoning about regular expressions, regular model checking, student projects, and research prototypes. It comes with a large benchmark from string constraint solving, regular model checking, and reasoning about regular expressions.

Distinctive Features

- Fast and simple.
- Explicit representation of the transition relation. - SOTA algorithms to work with nondeterminism. - Modern development workflow and technologies. - Easily extensible and modifiable
- Well-documented, examples, testing infrastructure.

High-level API with sane defaults,
low-level API for maximal optimization.
Python interface.

- A basis for a modular automata format . mata.

Usage

An example of using the $\mathrm{C}++$ interface for Mata. The code loads automata from a file in the . mata format with bitvectors on transitions, mintermizes them, constructs NFAs from the loaded intermediate representations over the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, trims and determinizes the NFAs, adds a new transition with a new final state. It then creates a second automaton accepting the word cbba, and optionally concatenates the initial NFA with itself and prints the result in the .mata format, shown in the right-hand side.

Architecture

The main determinant of Mata is its threelayered data structure Delta for the transition relation: an ordered vector indexed by states. For each state, an ordered vector of ransitions over symbols, for each symbol, an ordered vector of target states.

Supported Operations

- Fine-grained modification of NFAs.

Boolean language operations $(\cap, \cup,-)$.

- Mintermization to handle large alphabets. Antichain-based language inclusion, equivalence, membership, emptiness.

Determinization, minimization, simulation reduction.
ϵ-transitions, ϵ-product, ϵ-removal.

- Rich visualization interface.
- Parsing of regexes (from RE2) and . mata format.

Python Interface

Mata provides an easy-to-use Python interface, as fast as $C++$ (\$ pip install libmata).
An example of using Python interface for Mata. The code loads automata from regular expressions, concate nates them, and displays the trimmed concatenation with conditional formatting.

Experimental Evaluation

We compared Mata against Vata [4], Brics [6], Awali [5], Automata.net [7], AutomataLib [3], FAdo [1], and Automata.py [2], on a benchmark from string constraint solving, reasoning about regexes, regular model checking, and solving arithmetic formulae. Mata consistently outperforms all other libraries on all benchmarks in all operations. Mata is also the backbone of the efficiency of the SMT solver Z3-Noodler (with a poster nearby), which outperforms the state of the art on many standard benchmarks.
Cactus plots show cumulative run time. Time axes are logarithmic.
Tables show statistics for the benchmarks. We list the number of timeouts (TO, 60 s), average time on solved instances (Avg), median time over all instances (Med), and standard deviation over solved instances (Std). Best values are in bold, times are in milliseconds unless seconds are explicitly stated. ~ 0 means a value close to zero.

- brics

$\xlongequal{\text { armc-incl (136) }} \xlongequal{\text { b-smt (384) }} \xlongequal{\text { emai--filter (500) }} \xlongequal{\text { lia-explicit (169) }} \quad$ lia-symbolic (169)

	TO Avg Med Std TO Avg Med Std TO Avg Med																			
Mata		174	2	1s	s 0	01	1	1	0	1	\sim		0	42		356		2		
Awali	7	1s	17	3s	0		6	4	0	- 46		162		21	21			8		14
Vata		324		577		- 7	7	10				322		121				11	10	
Automata.n		15	125	3s) 148	153	30			66	30		113	117	49		103	107	
Brics		659	34	2 s		43	43	19		103		280			62	63		55	60	33
AutomataLib	10	843	669	s		90	126	3s			390				285			164	173	
FAdo	58	8s		10 s		9109	112	67						1s	727			135	149	
Automata.py	10	913	133		S 334	424	то	15		520	19	2s		372	167			35		

noodler-compl (751) noodler-conc (438) noodler-inter (4872) param-inter (267) param-union (267)

Mata	0	39	\sim	401		0100	10286	0	~0	~ 0		3156	1s	TO	4s		0166		7326
Awali	0	73	2	638		0490	55 1s	6	6	1		7157	6s	то	7 s	50	0 1s		813 s
Vata	0	57	2	296					24	~ 0		2159	7s	то	8s		14 6s		72 s
Automata.net	0	53	39	110				0	26	24		9157	8 s	TO			0220		47314
Brics	0	47	8	190		0136	35204	0	- 7	3	21	1159	6 s	то	6s	5	0223		50307
AutomataLib		293	143	793					276	216	675	527	8s	TO	13s	S 227	27 10s	TO	O 15s
FAdo	10		5		189	10s	25 s 13 s			52			15s		20s	S 115	15 5s	12s	25 11 s
Automata.py		263	5	2 s					38	3	353	354	4s	то		s 245	4511 s		

Results per Operation

- automata.net
- automata.py
- automatalib
- awali
brics

	plemen					emptiness				inclus				inte				trim			union		
	Avg	Med Std	Avg	Med	Std		Avg M	Med S		Avg	Mer	Med				Med		Avg				Med	d Std
Mata	25	1315	78	8	235		0	~ 0		237		~ 5	576	6295				76		828	14		045
Awali	38	2462	166	22	402		17	~ 0	138	250		2	25	5312		~ 0	25	516	~	45	173		0527
Vata	36	3294					14			85			374	469				408			25		05
Automata	73	5989					0	~ 0	~0	0245		43		s 621			45	31		165	69		6163
Brics	46	24140	136	35	204		0	~0		0204		10		5115							99		223
AutomataLib	75	31657					3	2	5	560		42	102		91		748				311		35
FAdo	320		6 s	105	10s		23	~ 0		535		84					35	10		70			
Automata.py	226	25 25					53	~ 0		s 263		6	15		39		479				203		0377

Auction-Based Scheduling

Guy Avni ${ }^{1}$, Kaushik Mallik ${ }^{2}$, and Suman Sadhukhan

${ }^{1}$ University of Haifa, Haifa, Israel

${ }^{2}$ Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Multi-objective Control Problems

Consider a robot in a workspace with the following two objectives.

- Reach trash cans (and empty them) whenever they are full.
- Reach a charging station before the robot's battery runs out.

The goal: Synthesize a policy for the robot that satisfies both objectives in every run (possibly infinite).

Problem: Given an environment model, like a graph $G=$ $\langle V, E\rangle$, and a pair of LTL objectives Φ_{1} and Φ_{2} over V, with $\Phi_{1} \wedge \Phi_{2} \neq \mathrm{False}$, synthesize a policy (for G, a policy is an infinite path) that satisfies $\Phi_{1} \wedge \Phi_{2}$

Which objective do I prioritize?

Traditional monolithic approach: Synthesize a policy by treating $\Phi_{1} \wedge \Phi_{2}$ as a single objective. Our decentralized approach: Synthesize local policies for Φ_{1} and Φ_{2} and compose them at runtime

Advantages of the decentralized approach:

- Modularity. If only one of the objectives changes, a recomputation of the policy for the other objective may be avoided.
- Parallel computation. The local policies, for the given objectives, can be created independently and in parallel-even by different parties.

The Auction-Based Scheduling Framework

The composition of local policies is nontrivial, because the policies may disagree on their actions at any given time. Auction-based scheduling is a novel runtime policy-composition framework, where the policies participate in auctions (aka biddings) for the privilege of executing their favorite actions.
Tenders: policies augmented with bidding capabilities. Let $G=\langle V, E\rangle$ be a graph and ϕ be an arbitrary objective over V. We distinguish two types of policies, ones that select actions and ones that select bids

- An action policy for ϕ is a function $\alpha: V^{*} \rightarrow V$ that chooses the next vertex for any given finite path. Applying α repeatedly from an initial vertex generates an infinite path that satisfies ϕ. - A bidding policy is a function $\beta: V \times[0,1] \rightarrow[0,1]$ with the constraint that $\beta(v, B) \leq B$ for every v, B. Intuitively, $\beta(v, B)$ is the proposed bid if the current vertex is v and the current budget is B; the constraint $\beta(v, B) \leq B$ ensures that the bid does not exceed the budget.
A tender τ for ϕ is a tuple $\langle\alpha, \beta, \mathbb{B}\rangle$, consisting of an action policy α for ϕ, a bidding policy β, and a real number $\mathbb{B} \in[0,1]$ called the threshold budget.

Each tender requires a sufficient initial budget to be able to bid correctly and "serve" the objective it was designed for. The threshold budget \mathbb{B} is the infimum of the set of sufficient initial budgets; a formal explanation of the role of \mathbb{B} will be provided in $\{*\}$. The heart of our approach is the composition operation on two tenders:

> The composition of two tenders. Let $G=\langle V, E\rangle$ be a graph, $\tau_{1}=\left\langle\alpha_{1}, \beta_{1}, \mathbb{B}_{1}\right\rangle$ and $\tau_{2}=$ $\left\langle\alpha_{2}, \beta_{2}, \mathbb{B}_{2}\right\rangle$ be two tenders (for a pair of given objectives). The pre-requisite for the composition: $\mathbb{B}_{1}+\mathbb{B}_{2}<1$. The composition generates an infinite path defined inductively as follows:
> - Let $v^{0} \in V$ be the initial vertex, and $B_{1}>\mathbb{B}_{1}$ and $B_{2}>\mathbb{B}_{2}$ be the initial budgets allotted to τ_{1} and τ_{2}, respectively, such that $B_{1}+B_{2}=1$ (feasible, because of the pre-requisite stated above). - For each prefix $v^{0} \ldots v^{k} \in V^{*}$ and for any current budgets B_{1}, B_{2}, let $b_{1}=\beta_{1}\left(v^{k}, B_{1}\right)$ and $b_{2}=\beta\left(v^{k}, B_{2}\right)$ be the two bids proposed by the respective tenders.
> - If $b_{1}>b_{2}$ then τ_{1} wins the current round of auction, pays b_{1} to τ_{2} so that $B_{1}:=B_{1}-b_{1}$ and $B_{2}:=B_{2}+b_{1}$ are the new budgets, and chooses $v^{k+1}=\alpha_{1}\left(v^{0} \ldots v^{k}\right)$ as the next vertex. - If $b_{2}>b_{1}$ then τ_{2} wins the current round of auction, pays b_{2} to τ_{1} so that $B_{1}:=B_{1}+b_{2}$ and $B_{2}:=B_{2}-b_{2}$ are the new budgets, and chooses $v^{k+1}=\alpha_{2}\left(v^{0} \ldots v^{k}\right)$ as the next vertex. - If $b_{1}=b_{2}$ then it is tie which is resolved in a predetermined way.
$\{*\}$ The role of threshold budgets. Let G be a graph and ϕ be an objective. The threshold budget \mathbb{B} guarantees that there exist α and β such that the composition of the tender $\tau=\langle\alpha, \beta, \mathbb{B}\rangle$ with any other tender τ^{\prime} (fulfilling the pre-requisite) generates an infinite path satisfying ϕ.

1. An illustaion of the framework: $\Phi_{1}=$ ceach one of the trash cans, $\Phi_{2}=$ reach one of the nd $\tau_{2}=\left\langle\alpha_{2}, \beta_{2}, \mathbb{B}_{2}\right\rangle$ with $\mathbb{B}_{2}=1 / 2 ; \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$ are illustrated through the picture. The current bud gets available to the tenders are shown in the boxes ext to the vertices, and the respective bids and ac ions are shown on the edges. The current vertex is the one that is occupied by the robot. We observe that the tender τ_{1} wins the first bidding and moves ding and the he objectives Φ_{1} and Φ_{2} are fulfilled

Decentralised Synthesis w/ Varying Degrees of Synchronization
The decentralized synthesis problem: Given a graph G and a pair of objectives Φ_{1} and Φ_{2}, synthesize tenders τ_{1} and τ_{2}, respectively for Φ_{1} and Φ_{2}, such that their composition fulfills $\Phi_{1} \wedge \Phi_{2}$.

Ideally, the synthesis of τ_{1} and τ_{2} should be possible in isolation, without the knowledge of the other objective. In practice, this may not be always possible, because the pre-requisite $\mathbb{B}_{1}+\mathbb{B}_{2}<1$ may not be achievable. Luckily, the thresholds \mathbb{B}_{1} and \mathbb{B}_{2} can be lowered by incorporating some additional assumptions about the other tender. Based on the strength of the assumption, we consider three classes of decentralized synthesis problems; they are listed below in the order of strengths of the assumptions Strong $<$ Assume-Admissible $<$ Assume-Guarantee

Strong Synthesis: Assume the Worst Case (Weakest Assumption)
Advantage: Complete modularity: Each tender remains valid no matter how the other objective is altered.
Figure 2: The gist of the algorithm for strong synthesis: We solve two independent zerosum bidding games on the same graph with the individual objectives. The solution of the respective game provides the respective tender. In the two bid ding games, it can be shown that the protagonists-Homer and Marge - can win against any adversary with initial budget strictly greater than $1 / 4$ and $1 / 2$, respectively. Their respective winning strategies provide us the required $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$, and the thresholds $1 / 4$ and $1 / 2$ provide \mathbb{B}_{1} and \mathbb{B}_{2}, respectively. The strong synthesis is successful because $\mathbb{B}_{1}+\mathbb{B}_{2}<1$.

Theorem: If strong synthesis generates a pair of tenders τ_{1} and τ_{2} with $\mathbb{B}_{1}+\mathbb{B}_{2}<1$, then the composition of τ_{1} and τ_{2} fulfills $\Phi_{1} \wedge \Phi_{2}$

The following is an example where strong synthesis fails to generate tenders with $\mathbb{B}_{1}+\mathbb{B}_{2}<1$. Figure 3: Homer and Marge require initial budgets strictly larger than $7 / 8$ and $1 / 8$, respectively. Therefore, $\mathbb{B}_{1}=7 / 8$ and $\mathbb{B}_{2}=1 / 8$, and $\mathbb{B}_{1}+\mathbb{B}_{2} \nless 1$.

Assume-Admissible Synthesis: Assume Rational (Admissible) Behavior

When strong synthesis fails, we may make the tenders aware of each other's objectives and let them assume that the other tender acts rationally towards its own objective. For example, in both local synthesis problems from Fig. 3, the players become aware that the vertex losing will not be visited by the other tender if it plays rationally. Therefore, losing can be removed from both games, lowering the amounts of required initial budgets (which become $3 / 4+\epsilon_{1}$ and $0+\epsilon_{2}$, respectively). Advantage: Modularity modulo unchanged rational behavior: Each tender τ_{i} remains valid as long as the rational actions of the other tender τ_{3-i} remain unchanged. In particular, if the other objec tive Φ_{3-i} remains unchanged, the tender τ_{3-i} can be swapped with a different tender τ_{3-i}^{\prime} (possibly implementing an alternate policy) and no adjustment in τ_{i} will be needed.

Theorem: For every graph with maximum out-degree 2 and for every pair of ω-regular objectives, assume-admissible synthesis will have non-empty solutions.

Assume-Guarantee Synthesis: Assume Fulfillment of Contracts (Strongest Assumption)
When even assume-admissible synthesis fails, we can use assume-guarantee synthesis where the tenders are synchronized through pre-computed assume-guarantee contracts; the details can be found in the paper.

References

[1] G. Avni and T. A. Henzinger. A survey of bidding games on graphs. In Proc. 31st CONCUR volume 171 of LIPIcs, pages 2:1-2:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020
[2] A. J. Lazarus, D. E. Loeb, J. G. Propp, W. R. Stromquist, and D. H. Ullman. Combinatorial games under auction play. Games and Economic Behavior, 27(2):229-264, 1999.

Most General Winning Secure Equilibria

to win myself,
I should open the door infinitely often
assump $_{\bigcirc}$

I can block the door $O b j_{\square}$
to win myself, I should not block the door forever
assump $_{\square}$

Secure equilibrium = cooperative strategy + punishment strategy alternately use the middle passage
block the door forever

How to generalize secure equilibria to have more flexibility for the systems?

Generalizing Winning Secure Equilibria

$$
\wedge \inf (e) \Rightarrow \inf (e \rightarrow d)
$$

Most General WSE

$\left(\Psi_{\bigcirc}, \Psi_{\square}\right)$

- $\Psi_{\bigcirc} \wedge \Psi_{\square} \equiv O b j_{\bigcirc} \wedge O b j_{\square}$
- each Ψ_{i} is realizable by Player i
- every $\left(\operatorname{Str}_{\bigcirc}, \operatorname{Str}_{\square}\right)$ with $\operatorname{Str}_{i} \vDash \Psi_{i}$

$$
\begin{aligned}
& \Psi_{\bigcirc}=\text { assump }_{\bigcirc} \\
& \wedge\left(\text { assump }_{\square} \Rightarrow \text { Obj }_{\bigcirc}\right) \\
& \Psi_{\square}=\text { assump }_{\square}
\end{aligned}
$$ forms a WSE

Rational Players in a Graph Game

$\mathrm{Obj}_{\bigcirc}=$ infinitely often \mathbf{a}
$O b j_{\square}=$ infinitely often d
Goal $_{\bigcirc}=\left(\right.$ Obj $\left._{\bigcirc}, \neg O b j_{\square}\right)$
Goal $l_{\square}=\left(O b j_{\square}, \neg O b j_{\bigcirc}\right)$

Winning Secure equilibrium (WSE) cooperative + punishment
$\left(S t r O, S t r_{\square}\right)$
$\underset{. . \mathrm{b} \rightarrow \mathrm{e}}{\mathrm{a}} \mathrm{e}+$

- $\left(S t r \bigcirc, S t r_{\square}\right)$) both wins
- $\operatorname{Str}_{\bigcirc} \vDash \bigcirc$ loses $\Rightarrow \square$ loses $\underset{. . \mathrm{e} \rightarrow \mathrm{d}}{\mathrm{i}} \mathrm{a} \quad+\quad+. \mathrm{e} \rightarrow \mathrm{g}$
- $\operatorname{Str}_{\square}$ = \square \square loses $\Rightarrow \bigcirc$ loses

Contribution

- most general WSE = collection of equilibria as independently realizable specifications - sound and efficient but incomplete algorithm - generalized to k-player games (even with Env)

Future Works

- extend the notion to other equilibria, e.g., subgame-perfect equilibria
- quantitative settings

Pareto Curves for Compositionally Model Checking String Diagrams of MDPs

Kazuki Watanabe ${ }^{1,2^{*}}$, Marck van der Vegt ${ }^{3 *}$, Ichiro Hasuo ${ }^{1,2}$, Jurriaan Rot ${ }^{3}$, Sebastian Junges ${ }^{3}$
1: National Institute of Informatics, Tokyo, 2: SOKENDAI (The Graduate University for Advanced Studies), Hayama, 3: Radboud University, Nijmegen, the Netherlands kazukiwatanabe@nii.ac.jp *Equal contribution

Accepted in $30^{\text {th }}$ International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2024

Setting: Optimizing Reachability Probabilities of String Diagrams of MDPs
 Scheduler Synthesis + Its Performance Guarantee

Target problem

Overview: Compositional Formalism
String diagram of MDPs [Watanabe, Eberhart, Asada, Hasuo, CAV'23]

- A graphical expression with algebraic operations

Open MDP [Watanabe, cavr23]
Overview: Compositional Exact Algorithm [watanabe, cav23]

Open ends: $i_{1}, i_{2}, o_{1}, o_{2}$
Entrances: i_{1}, i_{2}
Exits: o_{1}, o_{2}
Given an entrance i_{1}, choose a scheduler σ that optimizes $\operatorname{RPr}^{\sigma}\left(i_{1} \rightarrow o_{1}\right)$ and $\operatorname{RPr}^{\sigma}\left(i_{1} \rightarrow o_{2}\right)$ \Rightarrow Multi-objective optimization!

Pareto curve of \mathcal{D}

Every point on the Pareto curve is achievable by a memoryless scheduler.

Main Contribution: Compositional Approximation Algorithm for String Diagrams of MDPs

Overview: Compositional Approximation Algorithm (New!)

Experiments and Related Work:

Compositional Approach for Sequential Composition ;	- Widely studied: [Barry et al., IJCAl'11], [Jothimurugan et al., NeurIPS'21], [Junges \& Spaan, CAV'22], [Neary et al., AAAl'22], [Watanabe et al., CAV'23], etc. - Our approach: composing approximation of Pareto curves - Many of them study expected rewards		
Probabilistic Model Checking wrt. Parallel Composition \|	[Kwiatkowska et al., Inf. Comp. 13]	- Compositional model checking of parallel composition $\mathcal{A} \\| \mathcal{B}$ - Using Pareto curves for obtaining sound approximations - Assume-guarantee "contracts" betw. \mathcal{A} and \mathcal{B} must be devised	
Sequential Value Iteration [Hahn \& Hartmanns, SETTA'16], [Hartmanns et al., J. Autom. Reason. '20]	- Essentially rely on unidirectional composition - Similar to the topological value iteration - Our approach can work with bidirectional composition		

mert.temel@intel.com
Intel Corporation

Abstract

Formal verification of multipliers, especially industrial designs, is difficult. We use the S-C-Rewriting method to efficiently verify a variety of multiplier-centric hardware designs. This work presents a custom tool, VeSCMul, that packs this method and other tools for easy verification of RTL multipliers. VeSCMul is fully verified itself, very fast, and compatible with industrial designs.

What is S-C-Rewriting?

- A custom term-rewriting method for multipliers: a set of rewrite rules convert both the RTL expressions and highlevel specification to the same final form.
- Developed for industrial designs: method supports many configurations such as shifted, truncated, saturated outputs; multiply, multiply-add, dot product..
- Very fast \& scales well: 64×64-bit multipliers are verified in seconds, 1024×1024-bit in minutes (much faster than any other method).
- Reliable verification results: soundness proofs are done through ACL2 theorem prover and programming language.
- Caveat: requires separation of multiplier's adder components from the rest of the circuit design components.

What is VeSCMul?

VeSCMul is a tool that implements S-C-Rewriting, and an adder detection program for full automation. It works with other utilities to support verification of complex Verilog designs.

4. Both the design and the spec are rewritten to a fixed form with S-C-Rewriting methodology

1. Based on target design, user states the conjecture to prove.
2. Included tools (ACL2's SV/SVTV) parses Verilog code and creates flattened symbolic simulation vectors.
3. As S-C-Rewriting depends on adder separation, the tool automatically finds and marks adders.
4. S-C-Rewriting is employed to rewrite both the design and spec to the same form.
5. If rewriting does not finalize the correctness proof, rewritten form may be passed to another tool (FGL) for finalizing the proof or counterexample generation.

VeSCMul Demo

VeSCMul is open-source and distributed with public ACL2 (interactive theorem prover). Events to verify a 64×64-bit multiplier:

```
(include-book "projects/vescmul/top" :dir :system)
(vescmul-parse
    :name my-multiplier-example
    :file "DT_SB4_HC_64_64_multgen.sv"
    :topmodule "DT_SB4_HC_64_64")
(vescmul-verify
    :name my-multiplier-example
    :concl (equal RESULT
                                    (loghead 128 (* (logext 64 IN1)
                                    (logext 64 IN2)))))
```

- include-book event loads VeSCMul and required libraries.
- vescmul-parse event parses the target design.
- vescmul-verify event attempts to verify the conjecture. RESULT is 128-bit wide design output and should be signed multiplication of 64-bit wide inputs IN1 and IN2. logext sign-extends, * multiplies, loghead truncates values. This proof event takes $1-2$ seconds and runs fully automatically.

Noteworthy Features

- Ability to state custom conjectures, supporting multiplier variants such as multiply-add, shifted/truncated outputs (vital for industrial designs)
- Fully automatic, only a fraction of target designs requiring manual intervention
- Integration into other verification flows, helpful during more complex tasks such as verification of floating-point designs
- The program itself is fully verified, delivering soundness guarantees of its results

Results

- Tested with 1000 s of different design configurations.
- Also got successful results in industrial designs, including verification flow of FP fused multiply-add. Tool helped notably cut down on verification time for new designs.
- Future work includes more testing and further improvements as needed.

Provable Preimage Under-Approximation for Neural Networks
 Xiyue Zhang, Benjie Wang and Marta Kwiatkowska Department of Computer Science, University of Oxford

 An anytime, scalable and flexible method for preimage approximation

 An anytime, scalable and flexible method for preimage approximation of neural networks, with application to quantitative verification.

 of neural networks, with application to quantitative verification.}

Background

Characterizing the preimage symbolically allows us to perform more complex analysis for a wider class of properties beyond local robustness, such as computing the proportion of inputs satisfying a property (quantitative verification) even if standard robustness verification fails.

Methods

Preimage approximation with provable guarantees:
1 Efficient input bounding plane generation
2 Refinement algorithm with novel input-split and ReLU-split methods

3
Optimization of convex bounding functions for tighter preimage approximation

Symbolic lower/upper bounding functions from output to input: $\underline{b}-\underline{A} x \leq f(x) \leq \bar{b}-\bar{A} x$

- under-approximation in the form of polytope:

$$
\{\mathrm{x} \mid \underline{b}-\underline{A} x \geq 0\} \rightarrow\{\mathrm{x} \mid f(x) \geq 0\}
$$

Refinement via splitting plane

- split the domain into subdomains to derive tighter preimage polytope over the subdomain
- the preimage is the union of the polytopes

$$
\mathrm{U}_{k \in[1, N]}\left\{x: b_{k}-A_{k} x \geq 0\right\}
$$

Refinement via naïve splitting is infeasible
Q1. How to prioritize which leaf subregion to split?
Region search strategy: $\operatorname{vol}\left(C_{1}\right)-\operatorname{vol}\left(\underline{C}_{1}\right)>\operatorname{vol}\left(\mathcal{C}_{2}\right)-\operatorname{vol}\left(\underline{C}_{2}\right)$
Q2. How to identify the best splitting plane?
Greedy method: $\left.\operatorname{vol}\left(T\left(\mathcal{C}_{1}\right)\right)+\operatorname{vol}\left(T\left(C_{2}\right)\right)>\operatorname{vol}\left(T\left(C_{1}^{\prime}\right)\right)+\operatorname{vol}\left(T\left(C_{2}\right)\right)\right)$

Optimize polytope volume via gradient descent

- The optimization problem over $\boldsymbol{\alpha}$ for K specifications

$$
\max _{0 \leq \alpha \leq 1} \int_{x \in \mathcal{C}} \mathbb{1}_{\min _{i \in[1, K]}} \underline{f}_{i}\left(x, \boldsymbol{\alpha}_{i}\right) \geq 0 \text { dx }
$$

Result 1: Comparison with SOTA methods

Models	Exact		Invprop	Our			
		\#Poly Time(s)	Time(s)	Cov(\%)	\#Poly	Time(s)	Cov(\%)
Vehicle Parking	10	3110.979	2.642	92.1	4	1.175	95.7
VCAS (avg.)	131	6363.272	-	-	12	11.281	91.0

- Orders-of-magnitude improvement in efficiency
- Preimage in the form of disjoint polytope union
- Splitting method designed for preimage abstraction
- Scalability to high-dimensional inputs

Result 2: Comparison with robustness verifiers

Task	α, β-CROWN		Our		
	Result	Time(s)	$\operatorname{Cov}(\%)$	\#Poly Time(s)	
Cartpole $(\dot{\theta} \in[-1.642,-1.546])$	yes	3.349	100.0	1	1.137
Cartpole $(\dot{\theta} \in[-1.642,0])$	no	6.927	94.9	2	3.632
MNIST $\left(L_{\infty} 0.026\right)$	yes	3.415	100.0	1	2.649
MNIST $\left(L_{\infty} 0.04\right)$	unknown 267.139	100.0	2	3.019	

- Provide quantitative results when the safety property does not hold.

Quadratization: What?

Consider a system in $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=f_{1}(\bar{x}), \\
\cdots \\
x_{n}^{\prime}=f_{n}(\bar{x}),
\end{array} \quad \text { where } f_{1}, \ldots, f_{n} \in \mathbb{C}[\bar{x}] .\right.
$$

New variables $y_{1}=g_{1}(\bar{x}), \ldots, y_{m}=g_{m}(\bar{x})$ are called quadratization if there exist $h_{1}, \ldots, h_{m+n} \in \mathbb{C}[\bar{x}, \bar{y}], \operatorname{deg} h_{1}, \ldots, \operatorname{deg} h_{m+n} \leqslant 2$ such that

$$
\left\{\begin{array} { l }
{ x _ { 1 } ^ { \prime } = h _ { 1 } (\overline { x } , \overline { y }) , } \\
{ \cdots } \\
{ x _ { n } ^ { \prime } = h _ { n } (\overline { x } , \overline { y }) }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
y_{1}^{\prime}=h_{n+1}(\bar{x}, \bar{y}) \\
\cdots \\
y_{m}^{\prime}=h_{n+m}(\bar{x}, \bar{y})
\end{array}\right.\right.
$$

Toy example

$$
\begin{aligned}
& x^{\prime}=x^{4} \\
& (\text { degree }=4)
\end{aligned} \xrightarrow{\text { introduce } y:=x^{3}}\left\{\begin{array}{l}
\left\{\begin{array}{l}
x^{\prime}=x y \\
y^{\prime}=3 x^{\prime} x^{2}=3 x^{6}
\end{array}\right. \\
(\text { degree } \leqslant 2)
\end{array}\right.
$$

Quadratization: Why?

- Synthesis of chemical reaction networks:

$$
\text { deg } \leqslant 2 \Longleftrightarrow \text { bimolecular network }
$$

- Reachability analysis: explicit error bounds for Carleman linearization in the quadratic case.
- Moder Order Reduction (MOR)

Research objectives

How to design a quadratization algorithm that preserves the numerical properties of the original system and ensures the computational efficiency of the algorithm.

Figure 1. Plot of the following systems with initial condition $\mathcal{X}_{0}=\left[x_{0}, y_{0}=x_{0}^{2}\right]=[0.1,0.01]$.
The third system is unstable and diverges in numerical integral!
Original: $x^{\prime}=-x+x^{3} \Leftrightarrow$
Stable: $\left\{\begin{array}{l}x^{\prime}=-x+x y \\ y^{\prime}=-2 y+2 y^{2}\end{array} \Leftrightarrow\right.$
Unstable: $\left\{\begin{array}{l}x^{\prime}=-x+x y \\ y^{\prime}=-2 y+2 y^{2}+12\left(y-x^{2}\right)=10 y-12 x^{2}+2 y^{2}\end{array}\right.$

Our Methodology

We define a system of differential equations

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{p}(\mathbf{x}) \tag{1}
\end{equation*}
$$

where $\mathbf{x}=\mathbf{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ is a vector of unknown functions and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is a vector of n-variate polynomials $p_{1}, \ldots, p_{n} \in$ $\mathbb{R}[\mathbf{x}]$.
Definition 1 (Equilibrium). For a polynomial ODE system (1), a point $\mathrm{x}^{*} \in \mathbb{R}^{n}$ is called an equilibrium if $\mathbf{p}\left(\mathbf{x}^{*}\right)=0$.
Definition 2 (Dissipativity). An ODE system (1) is called dissipative at an equilibrium point \mathbf{x}^{*} if all the eigenvalues of the Jacobian $\left.J(\mathbf{p})\right|_{\mathrm{x}=\mathrm{x}^{*}}$ of p and x^{*} have negative real part. It is known that a system which is dissipative at an equilibrium point x^{*} is asymptotically stable at x^{*}.

Examples of our methods

Consider the following differential equation:

$$
x^{\prime}=-x(x-1)(x-2)
$$

- System's equilibria: $0,1,2$
- Dissipative equilibria $x=0$ and $x=2$

Inner-quadratic quadratization: introduce $y=x^{2}$

$$
\left\{\begin{array}{l}
x^{\prime}=-x y+3 x^{2}-2 x, \\
y^{\prime}=-2 y^{2}+6 x y-4 x^{2}-\lambda\left(y-x^{2}\right)
\end{array}\right.
$$

Dissipative quadratization: append stabilizer $h(x, y)=y-x^{2}$ into the inner-quadratic system with scalar parameter λ

$$
\Sigma_{\lambda}=\left\{\begin{array}{l}
x^{\prime}=-x y+3 x^{2}-2 x, \\
y^{\prime}=-2 y^{2}+6 x y-4 x^{2}-\lambda\left(y-x^{2}\right)
\end{array}\right.
$$

Jacobian matrix of the above system:

$$
J=\left[\begin{array}{cc}
-y+6 x-2 & -x \\
6 y+2 \lambda x-8 x & -4 y-\lambda+6 x
\end{array}\right]
$$

For $\lambda=1,2,4,8, \ldots$ we check the eigenvalues of its Jacobian at points $(0,0)$ and $(2,4)$:

$$
\begin{array}{|l|l|l|}
\hline \lambda & \text { at }(0,0) & \text { at }(2,4) \\
\hline \hline 1 & -2,-1 & -2,3 \\
\hline 2 & -2,-2 & -2,2 \\
\hline 4 & -2,-4 & -2,0 \\
\hline 8 & -2,-8 & -2,-4 \\
\hline
\end{array}
$$

Table 1. Eigenvalues of the Jacobian of Σ_{λ}

Applications

- Reachability analysis with Carleman linearization.
- Preserving bistability.
- Coupled Duffing oscillators.

More information

[^3]

Figure 2. Paper

Z3-Noodler: An Automata-based String Solver

T

Yu-Fang Chen ${ }^{1}$, David Chocholaty ${ }^{2}$, Vojtěch Havlena ${ }^{2}$, Lukáš Holik², Ondřej Lengál², and Juraj Sič²

${ }^{1}$ Academia Sinica, Taipei, Taiwan ${ }^{2}$ Brno University of Technology, Brno, Czech Republic

Highlight

- string solver for quantifier-free theory of strings (QF S, QF SLIA)
- based on SMT solver Z3 and heavily using nondeterministic finite automata
- stabilization-based procedure for (dis)equalities with lengths and regular constraints
- support of predicates/functions defined by SMT-LIB
- tailored for regex-intensive and equation-intensive formulae

Architecture

- replacement of Z3's string theory
- SMT-LIB format of input formulae
- modified string theory rewriter (rules beneficial for the stabilization)
(1) String theory assignment (conjunction of (dis)equalities, regular constraints, predicates) (2) theory lemma (including LIA constraints) (3) Mata library for efficient handling of NFAs (4) internal LIA solver for checking lengths constraints

String Theory Core

Axiom saturation

- length-aware string axioms: $\left|t_{1} \cdot t_{2}\right|=\left|t_{1}\right|+\left|t_{2}\right|$
- axioms for string predicates/functions: \neg contains($\left.s, " a b c^{\prime \prime}\right)$ to $s \notin \sum^{*} a b c \sum^{*}$
- different saturation for predicates with concrete values

Preprocessing

- transforming the string constraint to a suitable form
- tailored for the particular decision procedure
- simple equations converted to regular constraints
- smart underapproximation

Decision procedures

- stabilization-based procedure
-iterative refinement of variables' languages
-based on noodlification of NFAs representing variable languages
-efficient NFA operations in Mata; eager simulation-based reduction
- generation LIA constraints describing lengths of stable solutions
- lazy generation of stable solutions
- complete for chain-free fragment

Noodlification of $x y x=z u \wedge u \in(b a b a)^{*} a \wedge z \in a(b a)^{*}$
$\mathcal{A}_{z u}$

- Nielsen transformation
- Nielsen graph construction \rightsquigarrow counter automaton generation
-transition saturation of the counter automaton
-iterative generation of LIA formulae describing paths
- complete for quadratic constraints (no lengths and regular constraints)

Experimental Evaluation

- benchmarks from SMT-LIB (QF_S, QF_SLIA)
- comparison with SOTA solvers
- Z3-Noodler v1.1 (TACAS'24 paper was v1.0)
- timeout 120 s, memory limit 8 GiB
- Regex, •Equations, and • Predicates-small
- Z3-Noodler outperforms other tools on Regex and Equations
- often complementary to other solvers
- great in a solver portfolio
- extensions
-supports string conversions (v1.1)
-support for replace_all is in making

Detailed Results

Included	Regex					Equations								Predicates-small				PyEx	
	$\begin{gathered} \text { Aut } \\ 15995 \end{gathered}$	Den	StrFuzz 11618	$\begin{array}{lc} \text { Syg } & \Sigma \\ 343 & 28955 \end{array}$		$\begin{array}{r} \text { Kal } \\ 1943 \end{array}$	Kep	Norn	Slent	Slog	Web	Woo	Σ_{25324}	StrInt	Leet	StrSm	Σ_{21500}		
		999				587	1027	1128	1976	365	809	16968		2652	1880	23845			
Unsupported	0	0	0	0	0		0	0	0	0	0	316	0	316	0	0	0	0	0
Z3-Noodler	60	0	2	0	62	270	3	0	1	0	8	59	341	264	4	137	405	94	
cvc5	93	18	703	0	814	1	240	84	24	0	47	54	450	5	0	19	24	19	
Z3	125	116	537	0	778	284	309	124	73	31	104	27	952	239	0	59	298	987	
Z3str4	60	4	30	0	94	174	254	73	73	16	121	78	789	1102	4	60	1166	570	
OSTRICH	48	6	218	0	272	288	387	0	126	6	74	53	934	1059	27	173	1259	12833	
Z3str3RE	66	27	185	1	279	144	311	133	87	55	192	118	1040	3231	192	259	3682	17764	
Z3-Noodler ${ }^{\text {pr }}$	86	1	1982	0	2069	508	575	0	6	0	45	256	1390	1627	29	692	2348	13362	

SV-COMP and Test-Comp Posters

SoSy-Lab

Software Systems

$13^{\text {th }}$ Competition on Software Verification

Dirk Beyer

Features

Table 2: Algorithms and techniques that the participating verification systems used; ${ }^{\text {new }}$ for first-time participants, ${ }^{\varnothing}$ for hors-concours participation

More Information

https://sv-comp.sosy-lab.org/2024/

Reference

D. Beyer. State of the art in software verification and witness validation: SV-COMP 2024. In Proc. TACAS, LNCS . Springer, 2024

Score Schema

Table 6: Scoring schema for SV-COMP 2024 (unchanged from 2021)

Figure 1: Quantile functions for category C-Overall.

Frameworks

Table 3: Solver libraries and frameworks that are used as components in the participating verification systems; ${ }^{\text {new }}$ for first-time participants, ${ }^{\varnothing}$ for horsconcours participation

Results

Table 4: Quantitative overview over all regular results; empty cells are used for opt-outs, ${ }^{\text {new }}$ for firsttime participants, ${ }^{\varnothing}$ for hors-concours participation

Dirk Beyer, Stefan Löwe, and Philipp Wendler

BenchExec: A Framework for Reliable Benchmarking and Resource Measurement

Benchmarking Requirements

1. Measure and Limit Resources Accurately
2. Terminate Processes Reliably
3. Assign Cores Deliberately
4. Respect Nonuniform Memory Access
5. Avoid Swapping
6. Isolate Individual Runs

Scope

- Linux systems
- CPU-bound tool (negligible I/O)
- No use of other resources such as GPUs
- No networking / distributed execution
- No user interaction
- No malicious intent
\Rightarrow Great for solvers, verifiers, etc.!

Use Cases

- Low-level command for isolated, limited, and measured execution of a tool
- Integration in other benchmarking frameworks via command line and Python API (used by StarExec)
- Benchmarking with large number of runs
- Competition execution
(used e.g. by SV-COMP since 2016)
- Regression testing

Techniques and Features

Benchmarking containers implemented with Linux features such as

- Control groups (cgroups) for resource limitation and measurements (compatible with cgroups v1 and v2)
- Namespaces for isolation
- Overlay filesystem (overlayfs)
for intercepting file writes
(same techniques as used by Docker, etc.)
- Parallel execution of tools
- Automatic calculation of distribution of cores and memory regions
- Knows about NUMA and hyper threading
- Configurable file-system layout in container
(hide directories, allow write access, etc.)

ExECUTION

TABLE-GENERATOR

- Combine results from several executions
- Define table layout
- Select and filter results
- Compute statistics
- Export raw data as TSV
- Generate interactive tables as stand-alone HTML files
- Quantile and scatter plots
- Live analysis of data

Paper

- STTT 2017
- Open Access
- DOI 10.1007/ s10009-017-0469-y
Important aspects for benchmarking, hardware influence, how to present results,


```
                                    S_lol
```


- License Apache 2.0
- No root access required for benchmarking
- Available on PyPI and github.com/ sosy-lab/benchexec

SoSy-Lab

CPAchecker

A Tool for Configurable Program Analysis

Daniel Baier, Dirk Beyer, Po-Chun Chien, Marek Jankola, Matthias Kettl, Nian-Ze Lee, Thomas Lemberger, Marian Lingsch-Rosenfeld, Martin Spiessl, Henrik Wachowitz, and Philipp Wendler

CPACHECKER

CPAV

CPACHECKER is a modern and versatile framework for building software-verification analyses from well-known concepts that match the user's requirements.

cpachecker. sosy-lab.org

Overview

Competition Contribution

"CPACHECKER 2.3 with Strategy Selection" is our latest paper describing new developments and configurations used in SV-COMP 2024.

- Utilize strategy selection to predict a sequential portfolio of analyses
- Support all properties and categories of C programs
- 1st place in category FalsificationOverall
- 2nd place in category Overall
- 3rd place in category ReachSafety
- 17968 validated results in total (the most among all participants)
- Only 17 wrong results (0.06% of all tasks)
- New and improved analyses for:

Reachability
Memory safety
Termination
Overflows
Data races

Paper available here

Config for Reachability Single-Loop

Verification Strategy for SV-COMP 2024

Contributors

CPACHECKER is an open-source project, mainly developed by the Software and Computational Systems Lab at LMU Munich, and is used and extended by international associates from U Passau, U Oldenburg, U Paderborn, ISP RAS, TU Prague, TU Vienna, TU Darmstadt, and VERIMAG in Grenoble, along with several other universities and institutes.

We thank all contributors for their work on CPACHECKER.

References

[1] Beyer, D., Chien, P.C., Lee, N.Z.: CPA-DF: A tool for configurable interval analysis to boost program verification. In: Proc. ASE. pp. 2050-2053. IEEE (2023).
2] https://doi.org/10.1109/ASE56229.2023.00213
[2] Beyer, D., Dangl, M., Wendler, P.:
refined invariants. In: Poosting
Proc. CAV. pp
kinduction with continuouslyrefined invariants. In: Proc. CAV. pp. 622-640. LNCS 9206, Springer (2015). https://doi.org/10.1007/978-3-319-21690-4_42
[3] Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verification.
J. Autom. Reasoning $60(3), 299-335(2018)$ https://doi.org/10.1007/s10817-017-9432-6 J. Autom. Reasoning 60(3), 299-335 (2018). https://doi.org/10.1007/s10817-017-9432-6
[4] Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking revisited: Adoption to software verification. arXiv/CoRR 2208(05046) (July 2022). https://doi.org/10.48550/arXiv.2208.05046
[5] Beyer, D., Lemberger, T.: Symbolic execution with CEGAR. In: Proc. ISoLA. pp. 195-211. Beyer, D., Lemberger, T.: Symbolic execution with CEGAR. In: Proc. ISoLA. p
LNCS 9952, Springer (2016). https://doi.org/10.1007/978-3-319-47166-2_14
[6] Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR Beyer, D., Löwe, S.:
and interpolation. In: Proc. FASE. pp. 146-162. LNCS 7793, Springer (2013). and interpolation. In: Proc. FASE. pp. 14
https://doi.org/10.1007/978-3-642-37057-1_11
[7] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752-794 (2003). https://doi.org/10.1145/876638.876643
[8] Friedberger, K.: CPA-BAM: Block-abstraction memoization with value analysis and predicate analysis (competition contribution). In: Proc. TACAS. pp. 912-915. LNCS 9636, Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_58

CPV: A Circuit-Based Program Verifier

Po-Chun Chien and Nian-Ze Lee

\{po-chun.chien, nian-ze.lee\}@sosy.ifi.lmu.de

Motivation

HWMCC [5] (Input: ВTOR2 circuit)
ABC [7], AVR [9], \ldots

Applicable?
SV-COMP [1]
(Input: C program)

Software Architecture

Strategy for SV-COMP 2024

CPV runs a sequential portfolio consisting of property-directed reachability (PDR) [8], interpolationbased model checking (IMC) [11], k-induction (KI) [14], and bounded model checking (BMC) [6].

Artifact DOI: 10.5281/zenodo. 10063681

Evaluation Results at SV-COMP 2024

6th, 3rd, and 2nd place in ReachSafety, ReachSafety-ECA, ReachSafety-Hardware, respectively

Summary

- It is feasible to utilize sequential circuits as intermediate representations for software verification
- CPV can employ different hardware verifiers as the backend
- CPV competed well against other mature verifiers in SV-COMP
- Future work:
- Support more verification properties (e.g., no-overflow and termination)
- Export correctness witnesses
- Incorporate more backend verifiers
- Apply circuit optimization to improve the performance of verification

References

[1] Beyer, D.: State of the art in software verification and witness validation: SV-COMP 2024. In: Proc. TACAS (2024)
[2] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.: Verification witnesses. ACM Trans. Softw. Eng. Methodol. 31(4), 57:1-57:69 (2022)
[3] Beyer, D., Kanav, S.: CoVeriTeam: On-demand com position of cooperative verification systems. In: Proc TACAS. pp. 561-579. LNCS 13243 (2022)
[4] Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech. Rep. 07/1, Institute for Formal Models and Verification, Johannes Kepler University (2007)
[5] Biere, A., Froleyks, N., Preiner, M.: 11th Hard ware Model Checking Competition (HWMCC 2020) http://fmv.jku.at/hwmcc20/, accessed: 2023-01-29
[6] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 117-148 (2003)
[7] Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification tool. In: Proc. CAV. pp. 24-40. LNCS 6174 (2010)
[8] Eén, N., Mishchenko, A., Brayton, R.K.: Efficient im plementation of property directed reachability. In: Proc. FMCAD. pp. 125-134 (2011)
[9] Goel, A., Sakallah, K.: AVR: Abstractly verifying reach ability. In: Proc. TACAS. pp. 413-422. LNCS 12078 (2020)
[10] Griggio, A., Jonáš, M.: Kratos2: An SMT-based model checker for imperative programs. In: Proc. CAV. pp checker for im
[11] McMillan, K.L.: Interpolation and SAT-based mode checking. In: Proc. CAV. pp. 1-13. LNCS 2725 (2003)
(12] Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Source code repository of BTOR2, BTORMC, and BOolector 3.0. https://github.com/Boolector/btor2tools, accessed 2023-01-29
13] Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtormC, and Boolector 3.0. In: Proc. CAV. pp. 587595. LNCS 10981 (2018)
[14] Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Proc FMCAD, pp. 127-144. LNCS 1954 (2000)
©ultimate.informatik.uni-freiburg.de

Features

- Memory safety analysis
- Overflow detection
- Termination analysis using Büchi automata
- Nontermination analysis using geometric nontermination arguments
- LTL software model checking
- Bitprecise analysis
- IEEE 754 floating point analysis
- Error witnesses
- Correctness witnesses
- Error localization

Techniques

- On-demand trace-based decomposition
- Interprocedural analysis via nested word automata
- Theory-independent interpolation
- Refinement selection
- Configurable block encodings
- Multi SMT solver support
- Synthesis of ranking functions
- Efficient complementation of semi-deterministic Büchi automata
- (Nested word) automata minimization

Automata-theoretic proof of program correctness

Program \mathcal{P} is correct because each error trace is infeasible, i.e. the inclusion $\mathcal{P} \subseteq \mathcal{A}_{1} \cup \mathcal{A}_{2}$ holds.

Program / automaton \mathcal{P} whose language is the set of error traces.

- Alphabet: set of program statements
$\Sigma=\{\mathrm{p}!=0, \mathrm{n}<0, \mathrm{n}\rangle=0, \mathrm{p}=0, \mathrm{n}=0, \mathrm{n}!=0, \mathrm{p}:=0, \mathrm{n}-\mathrm{-}\}$
- The language of \mathcal{P} is the set of error traces.
- In the first iteration, we analyze feasibility of the error trace $\pi_{1}=p!=0 \quad \mathrm{n}>=0 \quad \mathrm{p}==0 . \pi_{1}$ is infeasible. Via interpolation, we obtain the following Hoare triples.

$\{$ true $\}$	$\mathrm{p}!=0$	$\{p \neq 0\}$
$\{p \neq 0\}$	$\mathrm{n}>=0$	$\{\overline{p \neq 0}\}$
$\{p \neq 0\}$	$\mathrm{p}=0$	$\{\overline{\text { false }\}}\}$

We construct the automaton \mathcal{A}_{1} such that its language is the set of all traces whose infeasibility can be shown using the predicates true, $p \neq 0$, and false.

- Analogously, in the second iteration the automaton \mathcal{A}_{2} is constructed.
- We check the inclusion $\mathcal{P} \subseteq \mathcal{A}_{1} \cup \mathcal{A}_{2}$ and conclude that each error trace is infeasible and hence \mathcal{P} is correct.

UlTIMATE program analysis framework

Interpolation with unsatisfiable cores

Level 1: "interpolation" via

- strongest post

Level 2: interpolation via

- strongest post
- live variable analysis

Level 3: interpolation via

- strongest post
- live variable analysis
- unsatisfiable cores

Algorithm (for level 3)

- Input: infeasible trace $s t_{1}, \ldots, s t_{n}$ and unsatisfiable core $\mathrm{UC} \subseteq\left\{s_{1}, \ldots, s t_{n}\right\}$.
- Replace each statement that does not occur in UC by a skip statement or a havoc statement.
assume statement $\quad \psi \rightsquigarrow$ skip
assignment statement $\mathrm{x}:=\mathrm{t} \rightsquigarrow$ havoc x
- Compute sequence of predicates $\varphi_{0}, \ldots, \varphi_{n}$ iteratively using the strongest post predicate transformer $s p$.

$$
\begin{aligned}
\varphi_{0} & :=\operatorname{true} \\
\varphi_{i+1} & :=\operatorname{sp}\left(\varphi_{i}, s_{i+1}\right)
\end{aligned}
$$

- Eliminate each variable from predicate φ_{i} that is not live at position i of the trace.
- Output: sequence of predicates $\varphi_{0}, \ldots, \varphi_{n}$ which is a sequence of interpolants for the infeasible trace $s t_{1}, \ldots, s_{n}$.

Commutativity Simplifies Proofs of Concurrent Programs

Concurrent Program

$$
\{x=y=i=j=0\}
$$

$$
\{x=y\}
$$

A Sound Reduction
simple invariant：$x=y \wedge i=j$

Commutativity

Many pairs of statements commute：
i．e．，order of execution does not matter
Example：$x+=A[i] y+=A[j] \sim y+=A[j] x+=A[i]$ Extension：proof－sensitive commutativity

Example：

swapping adjacent commuting statements
\rightsquigarrow equivalent traces

Reduction

representative subset of program traces：at least one representative per equivalence class
Soundness：
one trace correct \Rightarrow all equivalent traces correct correctness of reduction \Rightarrow correctness of program

Performance

Evaluation shows significant advantages over a state－of－the－art verifier（Ultimate Automizer）：

Competitions：

－SV－COMP＇24： $2^{\text {nd }}$ place in ConcurrencySafety
－SV－COMP＇23： $3^{\text {rd }}$ place in ConcurrencySafety
－SV－COMP＇22： $3^{\text {rd }}$ place in ConcurrencySafety， $1^{\text {st }}$ place in NoDataRace（demo）

Verification Principle

GemCutter generalizes from spurious counterexamples τ to larger sets of correct traces：
trace abstraction generalizes across loop iterations to a set of traces L
commutativity allows for generalization across interleavings to the set $c l(L)$ of all equivalent traces

If $c l(L)$ contains all program traces，the program is correct． Equivalently：If L contains all traces of a reduction，then the program is correct．

Commutativity \＆Verification

choice of representatives affects proof simplicity
－challenge：select suitable representatives choice of proof affects possible commutativity －challenge：find useful abstract commutativity partial order reduction algorithms speed up verification －challenge：adapt classical POR algorithms commutativity reasoning is widely applicable －challenge：extend to more programs \＆properties
［SV－COMP＇22］Ultimate GemCutter and the Axes of Generalization， Klumpp，Dietsch，Heizmann，Schüssele，Ebbinghaus，Farzan and Podelski， 2022
［PLDI＇22］Sound Sequentialization for Concurrent Program Verification，
Farzan，Klumpp and Podelski， 2022
［POPL＇23］Stratified Commutativity in Verification Algorithms for Concurrent Programs，Farzan，Klumpp and Podelski， 2023
［POPL＇24］Commutativity Simplifies Proofs of Parameterized Programs， Farzan，Klumpp and Podelski， 2024

Ultimate Kojak

Daniel Dietsch, Marius Greitschus, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz, Christian Schilling, Tanja Schindler

Features

- Reachability analysis
- Memory safety analysis
- Bitprecise analysis
- IEEE 754 floating point analysis
- Error witnesses
- Correctness witnesses

Techniques

- Abstraction refinement
- Configurable block encodings
- Multi SMT solver support
- Newton-style interpolation

Ultimate program analysis framework

C memory model

Models dynamically allocated memory through Boogie arrays:

- memory-[int|pointer|bitvector8| . .]. store memory contents
- one array per used Boogie data type
- two dimensional, a memory address has components "base" and "offset"
- models disjointness of memory areas allocated by different malloc calls
- valid: store which base addresses are allocated
- length: store maximal offset at each base address
-"*p is a valid pointer dereference" \Longleftrightarrow valid[p.base] \wedge p.offset \leq length[p.base]
-"Program has no memory leaks" \Longleftrightarrow valid = old(valid) at the end of main

SMT solver integration

Hoare triple checks

"Is $\{P\} s\{Q\}$ a Hoare triple?"
Features:

- Simplify check if $(\operatorname{variables}(P) \cup \operatorname{variables}(s t)) \cap \operatorname{variables}(Q)=\emptyset$.
- often blocked because P, st and Q access the same array (but perhaps at different positions)
- attempt to partition arrays via "alias analysis" (work in progress)
- Avoid checks with intricate predicates.
- Use incremental (push/pop) solver queries when possible, e.g., group checks that share the same precondition P.
- Abstract interpretation-based:

Check if post\# ${ }^{\#}\left(P^{\#}, s t\right) \sqsubseteq Q^{\#}$ holds in some abstract domain.

- Unify equivalent predicates.
- Cache Hoare triples and implication between predicates.

Tree interpolation

- Interpolating solvers used by Ultimate: SMTInterpol, Z3
- Tree interpolation syntax example (procedures foo, bar):
(assert (! (..) :named foo-stm1))
(assert (! (..) :named foo-stm2))
(assert (! (..) :named bar-stm1))
(assert (! (..) :named bar-stm2))
(assert (! (..) :named foo-stm3))
(check-sat)
(get-interpolants (foo-stm1 foo-stm2 (bar-stm1 bar-stm2) foo-stm3))

Interface

- Java interface (currently only SMTInterpol)
- SMTLib2 interface
- Solvers in use at SV-COMP 2018: SMTInterpol, Z3, MathSat, CVC4 as many as we can get!

Newton-style interpolation

- Input: infeasible trace s_{1}, \ldots, s_{n}, unsatis-
fiable core $\mathrm{UC} \subseteq\left\{s_{1}, \ldots, s t_{n}\right\}$
- Replace statements not in UC: assume statement $\psi \rightsquigarrow$ skip assignment statement $x:=t \rightsquigarrow$ havoc x
- Compute sequence of predicates $\varphi_{0}, \ldots, \varphi_{n}$ iteratively using strongest post operator post

$$
\begin{aligned}
\varphi_{0} & :=\operatorname{true} \\
\varphi_{i+1} & :=\operatorname{post}\left(\varphi_{i}, s_{i+1}\right)
\end{aligned}
$$

- Eliminate each variable from predicate φ_{i} that is not live at position i of the trace.
- Output: sequence of predicates $\varphi_{0}, \ldots, \varphi_{n}$ which is a sequence of interpolants for the infeasible trace $s t_{1}, \ldots, s t_{n}$

trace state assertions $\tau \quad$ for τ	interpolating trace $\tau^{\#}$	state assertions for $\tau^{\#}$
φ_{0} true		true
$s t_{1} \mathrm{~b}:=\mathrm{a}$	$\mathrm{b}:=\mathrm{a}$	
$\varphi_{1} a=b$		$a=b$
$s t_{2} \mathrm{x}:=0$	havoc x	
$\varphi_{2} a=b \wedge x=0$		$a=b$
$s t_{3}$ havoc p	havoc p	
$\varphi_{3} a=b \wedge x=0$		$a=b$
$s t_{4}!1 \mathrm{a}[\mathrm{p}]$	$!\mathrm{a}$ [p]	
$\varphi_{4} a=b \wedge x=0 \wedge a[p]=$ false		$a=b \wedge a[p]=$ false
$s t_{5} \mathrm{a}[\mathrm{p}]:=$ true	a p$]$:=true	
$\varphi_{5} a=b[p:=$ true $] \wedge x=0 \wedge a[p]=$ true		$a=b[p:=$ true $] \wedge a[p]=$ true
$s t_{6} \quad \mathrm{x}:=\mathrm{x}+1$	havoc x	
$\varphi_{6} a=b[p:=$ true $] \wedge x=1 \wedge a[p]=$ true		$a=b[p:=$ true $] \wedge a[p]=$ true
$s t_{7} \mathrm{a}[\mathrm{p}]:=\mathrm{false}$	$\mathrm{a}[\mathrm{p}]:=\mathrm{false}$	
$\varphi_{7} a=b \wedge x=1 \wedge a[p]=$ false		$a=b \wedge a[p]=$ false
st ${ }_{8} \mathrm{a}$! $=\mathrm{b}$	$\mathrm{a}!=\mathrm{b}$	
$\varphi 8$ false		false

SoSy-Lab
Software Systems
(TEST-COMP '24)
Dirk Beyer

Features

Table 2: Technologies and features that the test generators used

Results

Table 3: Quantitative overview over all results

Tester			
cetfuzz ${ }^{\text {new }}$	226	2197	2258
CoVeriTest	462	4826	4806
ESBMC-kind ${ }^{\varnothing}$	195		
FDSE ${ }^{\text {new }}$	617	5132	5684
Fizzer ${ }^{\text {new }}$	583	5146	5538
FuSeBMC	930	5478	7295
FuSeBMC-AI	926	5418	7248
HybridTiger ${ }^{\varnothing}$	393	3987	4022
KLEE ${ }^{\varnothing}$	713	3023	4932
KLEEF ${ }^{\text {new }}$	655	4975	5766
Legion ${ }^{\varnothing}$		2896	
Legion/SymCC ${ }^{\varnothing}$	264	3381	3098
Owi ${ }^{\text {new }}$	256	2241	2420
PRTest	167	2980	2431
Rizzer ${ }^{\text {new }}$	555		
Symbiotic	666	3957	5245
TracerX	509	4435	4799
TracerX-WP ${ }^{\text {new }}$	322	1521	2315
UTestGen ${ }^{\text {new }}$	409	4195	4212
WASP-C ${ }^{\varnothing}$	532	2838	4009

References

Reference

D. Beyer. Automatic testing of C programs: Test-Comp 2024. Springer, 2024

Participants

Table 1: Competition candidates with tool references and representing jury members; new indicates first-time participants

Tester	Jury member	Affiliation
CEtfuzz ${ }^{\text {new }}$	Sumesh Divakaran	College of Eng. Trivandrum, India
CoVeritest	Marie-Christine Jakobs	LMU Munich, Germany
ESBMC-kind ${ }^{\text {® }}$	(hors concours)	-
FDSE ${ }^{\text {new }}$	Zhenbang Chen	National U. of Defense Techn., China
Fizzer ${ }^{\text {new }}$	Marek Trtík	Masaryk U., Brno, Czechia
FuSebmc	Kaled Alshmrany	U. of Manchester, UK
FuSeBmC-AI	Mohannad Aldughaim	U. of Manchester, UK
HybridTiger ${ }^{\text {® }}$	(hors concours)	-
KLEE ${ }^{\gamma}$	(hors concours)	-
KLEEF ${ }^{\text {new }}$	Yurii Kostyukov	Huawei, China
Legion ${ }^{\text {® }}$	(hors concours)	-
Legion/SymCC ${ }^{\varnothing}$	(hors concours)	-
Owi ${ }^{\text {new }}$	Léo Andrès	OCamlPro / LMF, France
PRTEST	Thomas Lemberger	LMU Munich, Germany
Rizzer ${ }^{\text {new }}$	Adam Štafa	Masaryk U., Brno, Czechia
Symbiotic	Martin Jonáš	Masaryk U., Brno, Czechia
TracerX	Joxan Jaffar	National U. of Singapore, Singapore
Tracer X-WP ${ }^{\text {new }}$	Joxan Jaffar	National U. of Singapore, Singapore
UTEstGen ${ }^{\text {new }}$	Max Barth	LMU Munich, Germany
WASP-C ${ }^{\varnothing}$	(hors concours)	-

Final Score

Figure 1: Quantile functions for category Overall.

Participation

Top: New participants

REPORT

https://test-comp.sosylab.org/2024/

Ranking

Table 4: Overview of the top-three test generators for each category (measurement values for CPU time and energy rounded to two significant digits)

Rank	Tester	Score	
Cover-Error			
1	FuSeBMC	930	76
2	FuSeBMC-AI	926	68
3	Symbiotic	666	5.2
Cover-Branches			
1	FuSeBMC	5478	2400
2	FuSeBMC-AI	5418	2300
3	Fizzer ${ }^{\text {new }}$	5146	1700
Overall			
1	FuSeBMC	7295	2500
2	FuSeBMC-AI	7248	2400
3	KLEEF ${ }^{\text {new }}$	5766	1700

[^0]: Moggi 1991] Moggi, E.: Notions of computation and monads, Inf. Comput. [Brookes 1996] Brookes, S.D.: Full abstraction for a shared-variable parallel language, Inf. Comput. [JPR 2012] Jagadeesan, R., Petri, G., Riely, J.: Brookes is relaxed, almostl, FOSSACS

[^1]: Central Result: Soundness of Abstract Logical Relation Method
 Every $\square^{\alpha} T$ is a congruence

 - $\square^{v} T$ is sound for contextual preorder

[^2]: Lars B. van den Haak ${ }^{1}$, Anton Wijs ${ }^{1}$, Marieke Huisman ${ }^{2}$ \& Mark van den Brand ${ }^{1}$

[^3]: - Paper: https://arxiv.org/abs/2311.02508
 - Code: https://github.com/yubocai-poly/DQbee

