
Joint ConferenceOn Theory & Practice Of Software

ETAPS Poster Book
Collection of posters presented at ETAPS 2024

Luxembourg, 6–12 April 2024

ESOP 2024 Posters

"Efficient Matching with Memoization for Regexes with Look-Ahead and Atomic Grouping," Hiroya Fujinami (NII, Tokyo) - 10 April, 2024

15

regex
w/o extensions

w/ atomic
grouping

Naive
memoization Our results

There is only informal discussion,
and it is hard to interpret correctly.

Q × ℕ ⇀ {𝖥}

Q × ℕ ⇀ {𝖥, 𝖲}w/ positive
look-ahead

 Q × ℕ
⇀ {𝖥(j) for j ∈ {0,…, ν(𝒜)}}

 is the maximum nesting depth
of atomic groupings in .
Typically, .

ν(𝒜)
𝒜

ν(𝒜) ≤ 1

 Q × ℕ
⇀ {𝖥, 𝖲(i) for i ∈ ℕ}

 Q × ℕ
⇀ {𝖥, 𝖲(i) for i ∈ ℕ}

 Q × ℕ
⇀ {𝖥, 𝖲(i) for i ∈ ℕ}

Q𝗌𝖾𝗅 × ℕ ⇀ {𝖥}

[Davis et al., S&P '21]

Q𝗌𝖾𝗅 × ℕ ⇀ {𝖥}

Our contribution
?

"Efficient Matching with Memoization for Regexes with Look-Ahead and Atomic Grouping," Hiroya Fujinami (NII, Tokyo) - 10 April, 2024

‣ Atomic grouping is an operator that controls backtracking.

- This discards remaining backtrackings when the grouped regex is matched.

‣ Example:

- /(?>a|ab)c/.match?("ac"), not match?("abc")

- not /(?>a*)ab/.match?(w) for w = "ab", "aab", "aaab", ...

‣ Typically, atomic grouping is used to prevent catastrophic backtracking.

- However, we believe it is valuable to support this extension for legacy systems.

Atomic grouping: operator for backtracking

30

Atomic grouping

/(?>r)/

atomic grouping

"Efficient Matching with Memoization for Regexes with Look-Ahead and Atomic Grouping," Hiroya Fujinami (NII, Tokyo) - 10 April, 2024

‣ There are four kinds of look-around assertions.

- /(positive|negative) look-(ahead|behind)/

‣ For simplicity, we only discuss positive look-ahead in discussions of look-around.
Adaptation to other look-around operators, such as negative look-behind, is straightforward.

‣ Example:

- /abc(?=def)/.match("abcdef") == "abc"

- /(?=abcdef)abc/.match("abcdef") == "abc"

Look-around: a.k.a. zero-width assertion

23

Look-around assertion

/(?=r)/

positive look-ahead

/(?!r)/

negative look-ahead

/(?<=r)/

positive look-behind

/(?<!r)/

negative look-behind

"Efficient Matching with Memoization for Regexes with Look-Ahead and Atomic Grouping," Hiroya Fujinami (NII, Tokyo) - 10 April, 2024

26

/((?=a*)a)*/

q1

𝖢𝗁𝖺𝗋(a)

q2
𝖲𝗎𝖻(𝗉𝗅𝖺, 𝒜′)

q3

𝖢𝗁𝖺𝗋(a)
𝒜′

 For , the call tree of is ... w = "aa" MATCH(q1,0)
MATCH(q1,0)

MATCH(q3,1)
MATCH(q3,2)

𝖲𝗎𝖼𝖼𝖾𝗌𝗌

MATCH(q1,1)
MATCH(q2,0)

MATCH(q2,1)
⋮

So, what is the value
recorded in ?M(q3,1)MATCH(q3,0)

𝖲𝗎𝖻(𝗉𝗅𝖺, 𝒜′)

MATCH(q3,2)
𝖲𝗎𝖼𝖼𝖾𝗌𝗌

MATCH(q3,1)𝖲𝗎𝖻(𝗉𝗅𝖺, 𝒜′)

 does not
terminate with a failure.
MATCH(q3,1)

(L2) When the same
appears twice in a call tree,
the first terminates
with a failure.

MATCH(q, i)
MATCH(q, i)

"Efficient Matching with Memoization for Regexes with Look-Ahead and Atomic Grouping," Hiroya Fujinami (NII, Tokyo) - 10 April, 2024

MATCH(q7,2)
𝖲𝗎𝖻(𝖺𝗍, 𝒜′) MATCH(q4,2)

33

/a*(?>c|a*)ab/

 For , the call tree of is ... w = "aab" MATCH(q1,0)
q1

𝖢𝗁𝖺𝗋(a)

q2
𝖲𝗎𝖻(𝖺𝗍, 𝒜′)

q3
𝖢𝗁𝖺𝗋(ab)

MATCH(q1,0)

q7 𝖢𝗁𝖺𝗋(a)

𝒜′

q4

q5 q6
𝖢𝗁𝖺𝗋(c)

MATCH(q1,1)
MATCH(q1,2)

MATCH(q5,2)
𝖥𝖺𝗂𝗅𝗎𝗋𝖾 𝖲𝗎𝖼𝖼𝖾𝗌𝗌

MATCH(q2,2)
𝖥𝖺𝗂𝗅𝗎𝗋𝖾

MATCH(q5,1)
𝖥𝖺𝗂𝗅𝗎𝗋𝖾

MATCH(q7,1)
MATCH(q7,2)

𝖲𝗎𝖼𝖼𝖾𝗌𝗌

Both calls finally fail.
...?M(q5,2) = M(q7,2) = 𝖥

If , this call fails
and backtracking causes.
M(q7,2) = 𝖥

𝖲𝗎𝖼𝖼𝖾𝗌𝗌
MATCH(q2,1)
𝖲𝗎𝖼𝖼𝖾𝗌𝗌

Then, the matching succeeds (!)
It breaks the "Correctness" prop.

Property 1 (Correctness).
.MATCH𝒜,w(q0, i) = MEMOM0𝒜,w(q0, i)

backtracking

𝖲𝗎𝖻(𝖺𝗍, 𝒜′)MATCH(q4,1)

MATCH(q2,2)
𝖥𝖺𝗂𝗅𝗎𝗋𝖾

backtracking

⋮

Memoization for regex extensions (look-around and atomic grouping)

Efficient Matching with Memoization for Regexes with
Look-around and Atomic Grouping (ESOP’24)
Hiroya Fujinami

1,2
, Ichiro Hasuo

1,2 1 National Institute of Informatics, Tokyo, Japan
2 SOKENDAI (The Graduate University for Advanced Studies), Japan

"Efficient Matching with Memoization for Regexes with Look-Ahead and Atomic Grouping," Hiroya Fujinami (NII, Tokyo) - 10 April, 2024

"Linear-time" and "easy to support extensions"

11

Requirements for matching implementation

‣ A regex matching implementation we need is

‣ Linear-time matching can be achieved by breadth-first matching.

‣ However, studies about extensions in breadth-first matching are few.
In particular, atomic grouping has not been well studied.

‣ Then, we will introduce depth-first matching with memoization [Davis et al. S&P'21].

linear
O(|w |)

Worst-case time complexity

Easy

To support extensions
(look-around, atomic grouping)

"Efficient Matching with Memoization for Regexes with Look-Ahead and Atomic Grouping," Hiroya Fujinami (NII, Tokyo) - 10 April, 2024

‣ Depth-first matching can lead to catastrophic backtracking.
Catastrophic backtracking is non-linear time backtracking.

‣ Catastrophic backtracking is the reason for ReDoS (Regular Expression Denial of Service).

ReDoS: a vulnerability by regex matching

6

Catastrophic backtracking and ReDoS

q1

q2

q3

q4 q5

a

a b

b

c

 For ,w = "ab"n = "ab…ababab"

backtracking

backtracking

backtracking

backtracking

backtracking

"ab…ababab"

"ab…ababab"

"ab…ababab"

"ab…ababab"

⋮
"ab…ababab"

⋮ cases...2n

/(ab|ab)*c/

ReDoS, efficient and extended regex matching

"Efficient Matching with Memoization for Regexes with Look-Ahead and Atomic Grouping," Hiroya Fujinami (NII, Tokyo) - 10 April, 2024

Efficient memoization

14

Range of memoization tables

‣ The type of memoization tables for is naively

‣ The previous study [Davis et al., S&P '21] shows that
recording only failures is sufficient for (non-extended) regex.

‣ However, this optimized memo. table type does not work with extended regex.
We will show examples of that later.

MATCH

MATCH𝒜,w : Q × ℕ → {𝖥𝖺𝗂𝗅𝗎𝗋𝖾, 𝖲𝗎𝖼𝖼𝖾𝗌𝗌(i) for i ∈ ℕ}

M : Q × ℕ ⇀ {𝖥𝖺𝗂𝗅𝗎𝗋𝖾, 𝖲𝗎𝖼𝖼𝖾𝗌𝗌(i) for i ∈ ℕ}

M : Q × ℕ ⇀ {𝖥𝖺𝗂𝗅𝗎𝗋𝖾}

"Efficient Matching with Memoization for Regexes with Look-Ahead and Atomic Grouping," Hiroya Fujinami (NII, Tokyo) - 10 April, 2024

Memoization and regex matching

13

Memoization

‣ Memoization is a programming technique
that makes recursive computations more efficient
by recording arguments and the corresponding return values and reusing them.

‣ We can define a depth-first matching algorithm as a recursive function
by the following signature (We show the entire definition later.)

‣ Therefore, we can apply memoization to depth-first matching.

MATCH𝒜,w : Q × ℕ → {𝖥𝖺𝗂𝗅𝗎𝗋𝖾, 𝖲𝗎𝖼𝖼𝖾𝗌𝗌(i) for i ∈ ℕ}

Memoization for regex matching

"Efficient Matching with Memoization for Regexes with Look-Ahead and Atomic Grouping," Hiroya Fujinami (NII, Tokyo) - 10 April, 2024

‣ Matching times grow in (r1) and in (r2-4) on other implementations,
but on our implementation (memo-regex), they grow in all regexes.

‣ Then, we can confirm that our algorithm works effectively for ReDoS vulnerable regexes.

O(2n) O(n2)
O(n)

Experiment results

40

Performance benchmark

(r1) (r2) (r3) (r4)

Experiment results

Tighten guarantee less accessibility after reading(𝖳𝗂)

Memory: msgs on timelines | View: accessible memory | Threads store/load views

A DENOTATIONAL APPROACH TO RELEASE/ACQUIRE CONCURRENCY

MAIN RESULTS

Rewind strengthens reliance on initial accessibility(𝖱𝗐) Forward weakens the guarantee of final accessibility(𝖥𝗐)

RULES
4 CONCRETE

3 ABSTRACT

GOAL Moggi-style Brookes semantics for the Release/Acquire relaxed memory model

Absorb guarantee fewer messages(𝖠𝖻)

Stutter propagates reliance as a guarantee(𝖲𝗍)

Mumble omits a guarantee and relies on it internally(𝖬𝗎)

Release/Acquire Interleaving Semantics [KHLVD 2017]

Fragment of the C/C++ model of causal propagation

RA state invariants, e.g.

view point to msg σ ν ⟹ ν.view ≤ σ

Built-in: higher-order functions & structural reasoning, e.g.

Monad-based Denotational Semantics [Moggi 1991]

Modular framework for effectful semantics

Adequacy

Abstraction

Relaxed memory
weakly consistent

concurrent shared state

Moggi semantics
effects denote monads

[Moggi 1991]

Brookes semantics
traces denote behaviors

[Brookes 1996][BHN 2016] [JPR 2012]
For TSO

NEW CHALLENGES ABOUND

More abstract and
nuanced traces

First-class parallelism
with causal propagation

More closure rules

Linear traces for a
decentralized model

Trace-based Denotational Semantics [Brookes 1996]

Sequences of guarantees to/from the environment

Thread views in trees (first-class parallelism)

A denotational semantics for Release/Acquire based on linear traces that is:
Adequate
(refinements are sound)

Standard
(monad base, truly compositional)

Abstract
(supports known transformations)

RAMoggi Brookes

Challenge: non-operational traces 	 Solution: percolate ABSTRACT rewrites out to induct

compositionality: homomorphic semantics

sequencing denotes monadic bind

Prep SyncInterleave
α

α α ωω
ω

REWRITE

Admissible step: ADVANCE (pretend to load)

[Moggi 1991] Moggi, E.: Notions of computation and monads, Inf. Comput. [Brookes 1996] Brookes, S.D.: Full abstraction for a shared-variable parallel language, Inf. Comput. [JPR 2012] Jagadeesan, R., Petri, G., Riely, J.: Brookes is relaxed, almost!, FOSSACS
[KHLVD 2017] Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics for relaxed-memory concurrency, POPL [BHN 2016] Benton, N., Hofmann, M., Nigam, V.: Effect-dependent transformations for concurrent programs, PPDP

effect-free ⟹

?✓

1 2 3 4

1 2 3 4

1 2 34

Impossible outcome:

Possible outcome:

Justified Transformations

Transition

Rely on

memory

Guarantee
memory

Sequence

of transitions

Rely on
accessibility

Guarantee
accessibility

Trace Guarantee to
return

Composition

Sequential

Parallel
Denotations

Sets of traces closed under REWRITE RULES

1 2 3 4

With only the CONCRETE rules the traces have an operational interpretation

Authors: Yotam Dvir, Ohad Kammar, Ori Lahav

Dilute touching value-view equals are indistinguishable(𝖣𝗂)

yotamdvir@mail.tau.ac.il | yotamdvir.github.io

FASE 2024 Posters

Concurrency in systems can cause subtle bugs that are difficult to detect.
As a result, concurrent systems are notoriously difficult to build.
To help build correct software, we develop VerCors, a tool for the
verification of concurrent and distributed software.

Want more?
Scan me!

utwente.nl/vercors

public class SearchArray {
 /*@ requires a!=null;
 @ requires a.length>0;
 @ ensures \result>=0 ==> a[\result]==elem;
 @ ensures \result==-1 ==> (\forall int i;
 0<=i && i<a.length; a[i]!=elem); */
 public static int search(int[] a, int elem) {
 int i = 0;
 /*@ loop_invariant 0<=i;
 @ loop_invariant i<=a.length;
 @ loop_invariant (\forall int j; 0<=j
 && j<i; a[j]!=elem); */
 while (i<a.length) {
 if (a[i]==elem) { return i; }
 i++;
 }
 return -1;
 }
}

VerCors

Extend LLVM verification support
with the Pallas project
Generate specifications
Apply VerCors to embedded &
industrial systems
Improve usability and

 scalability of the
 approach

To your
project?

Problem

Verification of Concurrent and
Distributed Software

Current collaborators
Marieke Huisman (Project lead), Lukas Armborst, Petra
van den Bos, Pieter Bos, Paula Herber, Robert Mensing,
Robert Rubbens, Alexander Stekelenburg, Ömer Şakar,
Philip Tasche
Funding projects

VerDi

Specification describes the intended
behaviour of the system
The user provides the program code and
specifications to VerCors
VerCors determines whether the
program is correct w.r.t. the specification
using logical inference
VerCors supports multiple languages
including Java, C, CUDA and OpenCL!

How does it work?

Verified!

Verified Parallel Nested DFS, an important
verification algorithm
Case study with Technolution to detect bugs in
their tunnel control software
VeyMont: Given a verified program, generate a
correct parallelised version
Alpinist: Automatic transformation of specifications
for GPU optimisations
VeSUV: Automatic encoding of embedded systems
designs written in SystemC into PVL

Achievements What's next?

Transactions can depend on future transactions.
Current blockchains force immediate decision (or).

Case 2: bad client () does not repay the loan on time.

Monitoring the future of Smart Contracts

Margarita Capretto, Martín Ceresa, and César Sánchez
Contact: firstname.lastname@imdea.org

Smart Contracts
- programs running on blockchains.
- govern exchange of cryptocurrency.
- interact with other smart contracts.
- cannot be modified.
- their effects are permanent.

Example: Multitransaction Flash Loan

- Monitors enforce desired transaction properties (P).
- If P fails, the monitor fails the whole transaction.
- If P holds, the transaction commits.
- Improve the reliability of smart contracts.

Runtime Verification

Progress: lenders always grant loans.

 Future monitors

Problem

Loan is repaid borrowing transaction commits
 top branch consolidates.

Loan is not repaid borrowing transaction fails
 bottom branch consolidates.

By the end of the borrowing transaction, the lender does not know in which case it is but must make a decision.

Preemptively fail itCommit it and trust the client

Violates progressViolates safety

Current blockchains

Delay transactions consolidation branch the execution allow differentiating the two cases.

Icons made by Freepik, iconfield, Eucalip from www.flaticon.com

- State properties across multiple transactions.
- Delay transactions consolidation.

Solution: Future monitors

Present Future
Global Monitors* Global future monitors*

Multicontract
monitors*

Multicontract future monitors*

Transaction monitors^ Future monitors [this work]

Operation Monitors^ *Future work ^Previous work

Monitors Hierarchy

Case 1: good client () repays the loan on time.

Safety: A loan is repaid to the lender within 2 transactions.

X

Case 1: good client () repays the loan on time. Case 2: bad client () does not repay the loan on time.

X

FoSSaCS 2024 Posters

c

e

Interactive Protocols

Challenge

Response

Challenge

Response

ProverVerifier

Instance

Claim

polynomial
time

exponential
time

Polynomial Verifier checks claims of
unbounded, but untrusted, Prover

Our approach enables certification with
polynomial time verification cost

Π

Π

mod

mod

false1 2

A macrostep algorithm transforms the formula by
applying a polynomial number of macrosteps.

Each step maps the formula, s.t. false

Efficient Certification for UNSAT
Full verification (proof of correctness for all inputs) is
impractical for state-of-the-art SAT solvers. Certification
instead checks the output as it is being produced. To be
practical, the certificate checker must be efficient.
Polynomially-sized non-interactive certificates do not exist
for problems outside NP. For UNSAT, extended resolution
proofs are used in practice. However, these can be
exponentially long w.r.t. the input.

c

e

Goal: Fast Certification via IP = PSPACE
The famous IP = PSPACE breakthrough in complexity theory [1,2]
proves existence of efficient (i.e. polynomial-time) certification
through interactive protocols (IPs) for any PSPACE problem, e.g.
for UNSAT. But their algorithm to generate the interactive
certificates is impractical. We try to adapt existing decision
procedures in automated reasoning to also generate interactive
certificates. The overhead of the interactive protocol must be
bounded, compared to just executing the decision procedure.

e

Davis-Putnam Procedure [3]

1

2

3

() () ()

c

e

Competitive IP
An IP is competitive with an algorithm A if

Intuitively, instances that are practical to
solve with A can be practically certified
with the IP.

pick x

c

e

Exploiting Arithmetisation
Arithmetisation is a fundemental
technique for designing IPs. The idea is to
assign a polynomial to each formula that
extends its binary behaviour.

Prior IPs use a straightforward
arithmetisation, e.g. the one shown above.
However, it is unclear how to apply it to
the Davis-Putnam Procedure.
Instead, we construct a competitive IP
using a non-standard arithmetisation:

true 0
1
1

1 2 1 + 2
1 2 1 2

3
false

1
0

1 2 1 2
1 2 1 + 2 1 2

1

true
false

c

e

A Framework for Competitive IPs
We give a theoretical framework to construct competitive IPs
for certain classes of UNSAT algorithms. This framework gives
sufficient conditions that an arithmetisation is compatible with
an algorithm. Given a compatible arithmetisation, we construct
a competitive IP in a generic fashion. The mapping must additionally commute with partial

evaluation and remainder w.r.t. a prime q.

An arithmetisation is compatible with a macrostep algorithm
if for every macrostep M there is a corresponding mapping on
polynomials .

A decision procedure for SAT:
Pick a variable x
Add all resolvents w.r.t. x
Remove all clauses with x or ¬x

Π

c

e

Open Questions
Implement further optimisations within this framework
Adapt different decision procedures (e.g. DPLL)
Exploit cryptographic assumptions
Use multiple provers to certify resolution proofs directly

A Resolution-Based Interactive
Proof System for UNSAT

Philipp Czerner, Valentin Krasotin, Javier Esparza
{czerner, krasotin, esparza}@in.tum.de

Technical University of Munich

[1] Lund, Fortnow, Karloff, Nisan, 1990
[2] Shamir, 1992 [3] Davis, Putnam, 1960

link to
paper

time(IP)
time() (poly) inputs

1

Here, works, but it fails for clauses
without x. We use
instead, which works in general.

(3 3 + 1 + 0) = 3 1 + 1 + 0

() = [0] [1]

() (1) 3

+ 3
8 8
+ 3 + 3

3 8 1

:= 2 mod 7

:= 2 mod 7

Tighter Construction of Tight Büchi Automata

Marek Jankola Jan Strejček
marek.jankola@sosy.ifi.lmu.de strejcek@fi.muni.cz

LMU Munich, Munich, Germany Masaryk University, Brno, Czechia

Motivation

Tight automata are useful in
•LTL model checking for shortest counterexamples
•LTL synthesis for maximally satisfying strategies
Previous constructions [4, 3] of tight Büchi automata (BA)
from Büchi automata have large raise of states in the worst
case and there is a big gap between the lower and the up-
per bound. In the following, n is the number of states of
an input automaton.

2Ω(n) O((
√
2n)2n)

Preliminaries

•Lasso-shaped word u = vwω is an infinite word com-
posed from a finite prefix (stem) - v and from infinite
repetition of a finite word (loop) - w.

•Each lasso-shaped word has infinitely many stems and
loops, we define |minSL(u)| = min{|vw| | u = vwω}.

Example

u = cb(abab)ω = c(ba)ω ⇒ |minSL(u)| = |c| + |ba| = 3

•Transition-based Büchi automaton (TBA) is a type of ω-
automaton that contains a set of accepting transitions (we
depict them with the blue mark) and accepts an infinite
word if there is a run (a sequence of transitions) over the
word that passes an accepting transition infinitely often.

Definition: Tight Transition-Based Büchi Automata

A TBA A is tight iff for each lasso-shaped word u ∈
L(A) there exists an accepting lasso-shaped run ρ satis-
fying |minSL(u)| = |minSL(ρ)|.

TBA A: not tight
ρ = p0

c−→ p1
a−→ p2

b−→ (r0
a−→ r1

b−→ r2
a−→ r3

b−→ r0)
ω

|minSL(ρ)| = 7 ̸= 3 = |minSL(c(ab)ω)|

p0 p1 p2 r0

r1

r2

r3

c a b

c a b

ab

Main Results

We prove the following theorems:

•Upper Bound: For each TBA with n states, we can con-
struct an equivalent tight TBA with at most O(n! · n3)
states.

TBA A†: tight A† is equivalent to A

p0 p1

p2

r0 r1 r2
c

a

b

a

c

c

b

a

•Tight TBA→ Tight BA: For each tight TBA with n

states, we can construct an equivalent tight BA with at
most 2n states.

•Lower Bound: For each n > 0, there is a BA with 2n+1

states such that every equivalent tight TBA has at least∑n
k=1

n!
(n−k)!

states.

•New Boundaries: The resulting new boundaries for tight
Büchi automata

2Ω(n) ≺ Ω
(n− 1

2
!
)

O(n! · n3) ≺ O((
√
2n)2n)

•Practical reductions: Let A be a tight TBA and let ⊑ be
a good for quotienting [1] preorder. The reduced automa-
ton A/⊑ is tight.

Implementation and Evaluation

Comparison of our tool Tightener against the only known
implemented algorithm CGH [4] that constructs tight
Büchi automata from LTL formulas (TO=timeout). Tight-
ener uses Spot [2] to obtain a TBA from LTL formula. We
measure the number of states of the resulting automata.

References
[1] L. Clemente et al. “Efficient reduction of nondeterministic automata with application to language

inclusion testing”. In: Log. Methods Comput. Sci. 15.1 (2019).
[2] A. Duret-Lutz et al. “From Spot 2.0 to Spot 2.10: What’s New?” In: Computer Aided Verifica-

tion - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings,
Part II. Ed. by S. Shoham et al. Vol. 13372. Lecture Notes in Computer Science. Springer, 2022,
pp. 174–187.

[3] R. Ehlers. “How Hard Is Finding Shortest Counter-Example Lassos in Model Checking?” In: ed.
by M. H. ter Beek et al. Vol. 11800. Springer, 2019, pp. 245–261.

[4] V. Schuppan. “Liveness checking as safety checking to find shortest counterexamples to linear
time properties”. PhD thesis. ETH Zurich, 2006.

M. Jankola was supported by the Deutsche Forschungsgemeinschaft (DFG) – 378803395 (ConVeY) and J. Strejček by Czech Science Foundation grant GA23-06506S

Checking History-Determinism is NP-hard for Parity Automata
Aditya Prakash

University of Warwick, UK
aditya.prakash@warwick.ac.uk

1 History-deterministic parity automata
History-determinism. Automata where nondeterminism can be resolved based
on the prefix read so far. Equivalently, if Eve wins the corresponding HD game,
proceeding in infinitely many rounds. In round i:
• Adam selects letter ai
• Eve selects transition qi

ai−−! qi+1
Eve’s winning condition: Eve’s run is accepting if Adam’s word is accepting.

p p,c q q,b r r,c · · ·

p q r
a,b,c : 1

a,b : 0

a,b,c : 1

a,c : 0

Figure 1: An HD Büchi automaton [3] and a play of history-determinism game on it. Eve’s winning
strategy in the HD game is to alternate between picking left and right transitions at the state q.

2 History of complexity of checking history-determinism
•Henzinger and Piterman, 2006 [5] - Can be decided in EXPTIME
•Kuperberg and Skrzypczak, 2015 [6] - As hard as solving Parity games, PTIME for
coBüchi automata

•Bagnol and Kuperberg, 2018 [1] - PTIME for Büchi automata

3 NP-hardness: reduction from 2-dimensional parity games
2-D parity games: A game arena with each edge labelled by two natural numbers,
forming two parity conditions χ1 and χ2.
Eve’s winning condition: If the χ1 parity condition is satisfied, then the χ2 parity
condition is satisfied.

G: u v w

v′ w′

e : (c1,c2)

e ′: (c3 ,c4)

f : (c5,c6)

f ′: (c7 ,c8)

g : (c9,c10)

Figure 2: A snippet of a 2-D parity game. The pentagons represent Adam’s vertices and the squares
represent Eve’s vertices.

Chatterjee, Henzinger and Piterman [4] have shown that deciding if Eve wins a 2-D
parity game is NP-hard.

D:

uD v$ vD wD

v′$ v′D w′
D

e : c1

e ′: c3

$: 0

$: 0

f : c5

f ′: c7

g : c9

H:

uH vH

v′H

vH, f

vH, f ′

vH,g

wH

w′
H

e : c2

e ′: c
4

$: 0
$: 0

$: 0

f : c6

f ′: c8

g : c10

f′ : c8

f : c 6

Figure 3: Reduction to simulation and checking history-determinism from 2-D parity game.

•H simulates D if and only if Eve wins G.
Theorem 1.Deciding simulation between two parity automata is NP-complete.
Good 2-D parity games: all paths that satisfy the χ2 parity condition also satisfy
χ1. Deciding if Eve wins a good 2-D parity game is NP-complete.
•H is history-deterministic if and only if Eve wins G.
Theorem 2.Checking history-determinism is NP-hard for parity automata.

4 History-deterministic automata for model checking
Language inclusion: Given parity automata A and B, is L(A)⊆ L(B)?
Deciding language inclusion is PSPACE-complete for nondeterministic parity
automata.
If B is HD, however, L(A)⊆ L(B) if and only if B simulates A [5].
Simulation game. The simulation game of A and B proceeds in infinitely many
rounds. In round i:
• Adam selects letter ai
•Adam selects transition pi

ai−−! pi+1 in A.
• Eve selects a transition qi

ai−−! qi+1 in B.
Eve’s winning condition: if Adam’s run in A is accepting, Eve’s run in B is accepting
as well.

p0 p1 p2 p3 p4 · · ·2.a0 5.a1 8.a2 11.a3 14.a4

1.a0 4.a1 7.a2 10.a3 13.a4Adam

Adam

Eve q0 q1 q2 q3 q4 · · ·3.a0 6.a1 9.a2 12.a3 15.a4

Figure 4: Order of moves in a simulation game. At the end of an infinite play, Adam constructs a word
and run on that word, and Eve constructs a run on the same word as well.

Deciding simulation between two parity automata is in NP, but we show that we
can do even better if B is history-deterministic.
Theorem 3.Given nondeterministic parity automaton A and HD parity automaton
B, checking if L(A)⊆ L(B) can be decided in quasi-polynomial time.

5 Open: how hard is recognising HD parity automata?
For a Büchi or coBüchi automaton, one can decide history-determinism in PTIME
by solving the 2-token game.
2-token game. Played between Eve and Adam, and proceeds in infinitely many
rounds. In round i:
• Adam selects letter ai
• Eve selects a transition qi

ai−−! qi+1
•Adam selects two transitions p1

i
ai−−! p1

i+1, p2
i

ai−−! p2
i+1.

Eve’s winning condition: Eve’s run is accepting if either of Adam’s two runs are
accepting.

q0 q1 q2 q3 q4 · · ·2.a0 6.a1 10.a2 14.a3 18.a4

1.a0 5.a1 9.a2 13.a3 17.a4Adam

Eve

Adam

Adam

p1
0 p1

1 p1
2 p1

3 p1
4 · · ·3.a0 7.a1 11.a2 15.a3 19.a4

p2
0 p2

1 p2
2 p2

3 p2
4 · · ·4.a0 8.a1 12.a2 16.a3 20.a4

Figure 5: Order of moves in a 2-token game. At the end of an infinite play, Adam constructs a word
and Eve and Adam construct one and two runs on that word respectively.

2-token conjecture. Eve wins the 2-token game on a parity automaton A if and
only if A is history-deterministic [1].
The 2-token conjecture holds for Büchi [1] and coBüchi automata [2]. Assuming
that the 2-token conjecture is true, we would only obtain a PSPACE-upper bound
for the problem of deciding history-determinism.
Open: Given a parity automaton A, what is the complexity of deciding if Eve wins
the 2-token game of A? What is the complexity of deciding history-determinism
of A?

References
[1]Marc Bagnol and Denis Kuperberg. Büchi Good-for-Games Automata Are

Efficiently Recognizable. In FSTTCS, 2018.
[2] Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. On

the Succinctness of Alternating Parity Good-For-Games Automata. arxiv, 2020.
[3] Antonio Casares, Thomas Colcombet, Nathanaël Fijalkow, and Karoliina

Lehtinen. From muller to parity and rabin automata: Optimal transformations
preserving (history-)determinism. arxiv, 2023.

[4] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized
Parity Games. In FoSSaCS, 2007.

[5] Thomas A. Henzinger and Nir Piterman. Solving games without
determinization. In CSL, 2006.

[6] Denis Kuperberg and Michal Skrzypczak. On determinisation of
good-for-games automata. In ICALP, 2015.

Symbolic Solution of Emerson-Lei Games for Reactive Synthesis
Daniel Hausmann, Mathieu Lehaut and Nir Piterman

hausmann@chalmers.se, lehaut@chalmers.se, piterman@chalmers.se

University of Gothenburg, Sweden

Overview

▶Winning regions in various ω-regular games are known to be nested fixpoints.

▶Emerson-Lei objectives succinctly encode standard objectives.

▶ Zielonka trees characterize winning in Emerson-Lei games.

We show how to extract a nested fixpoint from any Zielonka tree, resulting in
a symbolic fixpoint algorithm that solves Emerson-Lei games with n nodes, m
edges and k colors in time O(k! · m · n

k
2).

This generalizes previous fixpoint algorithms for Büchi, parity, GR[1], Rabin and
Streett games, recovering previous upper bounds on runtime.

Emerson-Lei Games

Infinite-duration zero-sum games played by two players ∃ and ∀:

G = (V = V∃ ∪ V∀, E ⊆ V × V, col : V → 2C, φ) φ ∈ B(GF(C))

Player ∃ wins play π ⊆ V ω in G if and only if col[π] |= φ

Examples:
φ = GF f (Büchi)

φ =
∧

1≤i≤k

GF fi (gen. Büchi)

φ =
∧

1≤i≤k1

GF pi →
∧

1≤j≤k2

GF qj (GR[1])

φ =
∨

i even
GF pi ∧ FG

∧

i<j≤k

¬pj (parity)

φ =
∨

1≤i≤k

GF ei ∧ FG ¬fi (Rabin)

φ =
∧

1≤i≤k

(GF ri → GF gi) (Streett)

φ =
∨

U∈U

∧

i∈U

GF fi ∧ FG
∧

j /∈U

fj (Muller for U ⊆ 2C)

Emerson-Lei games are determined, but not positional (e.g. Streett games).

Zielonka Trees

Tree Zφ with vertices X labeled by l(X) ⊆ C, subject to certain maximality
conditions. Vertex X is green if l(X)ω |= φ and red otherwise.

Require for all children Y, Y ′ of X in Zφ:
X green ⇔ Y red, l(Y) ⊊ l(X), l(Y) and l(Y ′) are incomparable.

Lemma: The Zielonka tree Zφ has at most e · |C|! vertices.

Play π = v0v1 . . . induces walk ρπ through Zielonka tree:
▶ start with v0 and left-most leaf in Zielonka tree;
▶ at vi and X , pick lowest ancestor Y of X s.t. col(vi) ⊆ l(Y) and

proceed with vi+1 and left-most leaf X ′ under Y that is to right of X

Dominating vertex: topmost node that is seen infinitely often in ρπ.

Lemma: Player ∃ wins play π ⇔ dominating vertex in ρπ is green.

Zielonka Trees by Example

X2{f}

X1∅

Büchi objective

Xf{f1, . . . , fk}

X1{f2, . . . , fk} . . . Xk {f1, . . . , fk−1}

generalized Büchi objective

Xk{p1, . . . , pk}

Xk−1{p1, . . . , pk−1}

. . .

X2{p1, p2}

X1{p1}

parity objective

X[]{r1, g1, . . . , rk, gk}

X[g1]{r1, r2, g2, . . . , rk, gk} . . . X[gk] {r1, g1, . . . , rk}

X[g1,r1]{r2, g2, . . . , rk, gk} . . . X[gk,rk] {r1, g1, . . . , rk−1, gk−1}

. .

X[g1,r1,...,gk,rk]∅ ∅

Streett objective

Fixpoint Extraction – Building Blocks

Inner vertices:
X

Y1 . . . Yn

⇝ X =ν Y1 ∩ . . . ∩ Yn

Y

X1 . . . X1

⇝ Y =µ X1 ∪ . . . ∪ Xn

Leaf vertices:
...

X

⇝ X =ν

⋃

Y ≥X

Walk(X, Y) ∩ Cpre(Y)
...

X

⇝ X =µ

⋃

Y ≥X

Walk(X, Y) ∩ Cpre(Y)

where
Walk(X, Y) = {v ∈ V | Y is lowest ancestor of X s.t. col(v) ⊆ l(Y)}

for vertices X, Y , and Cpre encodes one-step attraction for player ∃.

Main Result

Theorem: The solution of the extracted fixpoint equation system is the win-
ning region in the corresponding Emerson-Lei game.
Solve equation systems by fixpoint iteration to solve Emerson-Lei games with n
nodes and k colors symbolically in time O(k! · n

k
2+2). For simpler conditions,

this recovers previous fixpoint iteration algorithms.

Extracted Fixpoint Systems by Example

X2 =ν X1

X1 =µ f ∩ Cpre(X2) ∪ Cpre(X1)

Büchi objective

Xf =ν ∩1≤i≤kXi

X1 =µ f1 ∩ Cpre(Xf) ∪ Cpre(X1) . . . Xk =µ fk ∩ Cpre(Xf) ∪ Cpre(Xk)

generalized Büchi objective

Xk =µ Xk−1

Xk−1 =ν Xk−2

. . .

X2 =ν X1

X1 =µ

⋃
i pi ∩ Cpre(Xi)

parity objective

X[] =ν

⋂
1≤i≤k X[gi]

X[g1] =µ X[g1,r1] . . . X[gk] =µ X[gk,rk]

X[g1,r1] =ν

⋂
2≤i≤k X[g1,r1,gi] . . . X[gk,rk] =ν

⋂
1≤i<k X[gk,rk,gi]

. .

X[g1,r1,...,gk,rk] =ν g1 ∩ Cpre(X[]) ∪ r1 ∩ Cpre(X[g1]) ∪

Streett objective

Symbolic Reactive Synthesis

Reduction of safety and EL LTL formula φsafety ∧ φEL (with φEL ∈ B(GF(C)))
to symbolic game:

φsafety ∧ φEL Dφsafety

(Symbolic Safety)
synthesis game Gφsafety∧φEL

φEL

(Emerson-Lei objective)

Check realizability in time 2O(m·log m·2n), where n = |φsafety| and m = |φEL|.

More details and results in full paper: https://arxiv.org/pdf/2305.02793.pdf

Higher-OrderMathematicalOperationalSemantics
WeakApplicativeSimilarity

Cool Format
Passive operators are specified as

f (x1, . . . , xn) Ñ t f (x1, . . . , xn) xÝÑ t

Cool HO Specification must have
xm Ñ ym

f (x1, . . . , xm, . . . xn) Ñ f (x1, . . . , ym, . . . xn)

xm
xiÝÑ x 1

i

f (x1, . . . , xn) Ñ t
or xm

xiÝÑ x 1
i xm

xÝÑ x2
i

f (x1, . . . , xn) xÝÑ t

with xm, x 1
m ∉ Vars(t), for non-passive f

Soundness
Rules for strong transitions ÝÑ, xÝÑ aresound forweak transitionsùñ, xùñ, e.g.:

t Ñ t 1
t s Ñ t 1s ⇝ t ñ t 1

t s ñ t 1s

Lax-Bialgebra
ΣµΣ µΣ B(µΣ,µΣ)

Σ(µΣˆ B(µΣ,µΣ)) B(µΣ,Σ‹(µΣ+µΣ)) B(µΣ,Σ‹µΣ)

ι

Σ〈id,γ̃〉 ⪯

γ̃

ρ B(id,Σ‹∇)

B(id,ι̂)

for some weak transition semantics γ̃ : µΣÑ B(µΣ,µΣ)

more abstractly

yet more abstractly

Central Result: Compositionality for Free
For suitably defined weak semantics γ̃, ensuing similarity relation ⪯ is a congruence

LogicalPredicatesandStrongNormalization
Liftings
Reasoning with predicates requires liftings:
Pred(C) Pred(C)

C C

|´|

Σ

|´|
Σ

Pred(C)opˆ Pred(C) Pred(C)

Copˆ C C

|´|opˆ|´|

B

|´|
B

Invariants
Coalgebraic S-relative invariant: for givenpredicate S ĎµΣ, such Q ĎµΣ that

Q ď γ´1[B(S,Q)]

Logical invariant = logical predicate is a coal-gebraic invariant relative to itself

Key Construction: Logical predicate over P

We define predicate transformer □:
Given a program property P , □P is a canonical logical predicate, contained in P

Key Result: Induction up to □
Induction up to □ is a lightweight proof principle sound for well-behaved (relatively flat) HO Specifi-cations, which isolates the non-trivial core from the boilerplate part of the proof:
? Prove ι[Σ(□P)] ùñ P

 By generalities: ι[Σ(□P)] ùñ □P , hence J ùñ □P ùñ P

Key Application: Strong Normalization
P (t) = SN(t) = “all reductions t Ñ t 1 Ñ ¨¨¨ are finite”

References
[1] S. Goncharov, S. Milius, L. Schröder, S. Tsampas, H. Urbat, Towards a Higher-Order Mathematical OperationalSemantics, POPL 2023
[2] H. Urbat, S. Tsampas, S. Goncharov, S. Milius, L. Schröder, Weak Similarity in Higher-Order Mathematical Op-erational Semantics, LICS 2023
[3] S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat, Logical Predicates in Higher-Order Mathemat-ical Operational Semantics, FoSSaCS 2024

FurtherProspects

Metricreasoning onprograms

Applicationsto securecompilation

Call-by-valueevaluation

Parametricpolymorphism

Computationaleffects
Other ruleformats

ContextualEquivalenceandStep-Indexing
“Lazy” Contextual Preorder
“Lazy” contextual preorder/equivalence forprograms of type τ (w.r.t. convergence relation ⇓):

t Àτ s if @τ1,contexts C : τ⇝ τ1.C [t]⇓ ùñ C [s]⇓
t »τ s if @τ1,contexts C : τ⇝ τ1.C [t]⇓ ðñ C [s]⇓

E.g. f Àτ λx. f x, but f fiτ λx. f x

Ground Contextual Preorder
Ground contextual preorder/equivalence forprograms of type τ w.r.t. Booleans:

t Àbool
τ s if @contexts C : τ⇝ bool.C [t]⇓ ùñ C [s]⇓

t »bool
τ s if @contexts C : τ⇝ bool.C [t]⇓ ðñ C [s]⇓

E.g. f »bool
τ λx. f x

Abstract Contextual Preorder
For a preorder O ĎµΣˆµΣ, contextual preorder w.r.t. O is the greatest congruence ÀOĎ O on µΣ

more abstractly more abstractly

Abstract Step-Indexed Logical Relations
For a relation R ĎµΣˆµΣ on programs, by transfinite recursion:

□0R = R □αR =
∧

β<α□βR for limits ordinals α
□α+1R = □αR ^ (γˆ γ̃)´1[B(□αR,□αR)] □νR =

∧
α□αR

Central Result: Soundness of Abstract Logical Relation Method
 Every □αJ is a congruence
 □νJ is sound for contextual preorder

Higher-OrderAbstractGSOS
Categorical Framework for Higher-Order Operational Semantics

Language
Signature – Endofunctor Σ : C Ñ C on acategory C, e.g.:
• C = Set, Σ= {0/0, ai /0,+/2, ¨/2}

• C = “nominal sets”, ΣX =A+ [A]X +X ˆ X

Behaviour
Behaviour = Mixed-variance functor
B : Copˆ C Ñ C, e.g.:
• B(X ,Y) = Y X +Y (deterministic)
• B(X ,Y) =Pω(Y X +Y) (non-deterministic)

HO Specification in GSOS Format
t

aÝÑt1 s
āÝÑs1

t∥s
τÝÑt 1∥s1 t

sÝÑt 1
t sÝÑt 1 (λx. f)sÝÑ f [s/x]

ùñ Distributive law ρ of Σ over B

Higher-Order Bialgebraic Semantics
Transition semantics is a unique solution γ : µΣÑ B(µΣ,µΣ):

ΣµΣ µΣ B(µΣ,µΣ)

Σ(µΣˆ B(µΣ,µΣ)) B(µΣ,Σ‹(µΣ+µΣ)) B(µΣ,Σ‹µΣ)

Σ〈id,γ〉

ι γ

ρ B(id,Σ‹∇)

B(id,ι̂)

Generic Strong Applicative Bisimulation

Coalgebraic notion of strong applicativebisimilarity „ on initial Σ-algebra µΣ(=algebra of programs) as a pullback
„ µΣ

µΣ νγ.B(µΣ,γ)

A

coitγ

coitγ

Central Result: Compositionality for Free
Under certain general assumptions, „ is a congruence

LATEX TikZposter

Stochastic Window Mean-Payoff Games
Laurent Doyen1, Pranshu Gaba⋆2, and Shibashis Guha2

1CNRS & LMF, ENS Paris-Saclay, France
2Tata Institute of Fundamental Research, Mumbai, India,

⋆pranshu.gaba@tifr.res.in

Stochastic Window Mean-Payoff Games
Laurent Doyen1, Pranshu Gaba⋆2, and Shibashis Guha2

1CNRS & LMF, ENS Paris-Saclay, France
2Tata Institute of Fundamental Research, Mumbai, India,

⋆pranshu.gaba@tifr.res.in

Setup

•Played by 2 players

− player ⃝ (system)

− player □ (environment)

•Played on a directed graph with no deadlocks

−Vertices partitioned into (⃝,□,♢)
−Probability distributions over out-edges of ♢
−Edges have rational payoffs, w(e)

Example

v0v1

v3

v2 v4

v5 v6

v7 v8

0+1

+1

−1

+1

−1

+2

−2

+1

−3

−5

−1

+1

Gameplay

1. Place token on initial vertex vinit.

2. If token is on ⃝, then player ⃝ chooses an out-edge.
If token is on □, then player □ chooses an out-edge.
If token is on ♢, then an out-edge is chosen by the
probability distribution.

3.Move token along the chosen out-edge and go to step 2.

A play is an infinite path in the arena.

v0 v4 v5 v7 v8 v7 · · ·
−1 +2 −5 −1 +1 −1

Window mean-payoff objective WMP(ℓ)

Given window length ℓ ≥ 1.

A play π satisfies WMP(ℓ) if eventually, starting from every
point in π, the mean-payoff becomes non-negative in at most
ℓ steps.

The objective of player ⃝ is to satisfy WMP(ℓ).
The objective of player □ is to not satisfy WMP(ℓ).

v0 v4 v5 v7 v8 v7 v8 · · ·−1 +2 −5 −1 +1 −1

−1 +1

+2

−5 −6 −5 −6

−1 0

+1

−1 0

Strategies

A function that reads the sequence of vertices seen so far,
and returns the out-edge that the players should choose.

Decision problem

Given 0 ≤ p ≤ 1, does player ⃝ have a strategy to satisfy
WMP(ℓ) with probability at least p?

Positive ⃝-attractor of a set

All vertices from which player ⃝ can ensure that the
token eventually reaches the set with positive probability.

Target

Positive
⃝-attractor

· · ·

Trap for player ⃝

A subset from which player □ can ensure that the token
never leaves.

Note: The complement of a positive ⃝-attractor is a
trap for player ⃝.

Adversarial non-stochastic game

Game obtained by changing every ♢ to □.

v0v1

v3

v2 v4

v5 v6

v7 v8

0+1

+1

−1

+1

−1

+2

−2

+1

−3

−5

−1

+1

If player ⃝ wins in the adversarial game, then she surely
wins in the original game.

Positive winning (p > 0)

W 1
⃝

A1
⃝

W 2
⃝

A2
⃝

...

W k
⃝

Ak
⃝

PosWin ⃝

ASWin □

Winning region of ⃝
in adversarial game

W i
⃝:

Positive ⃝-attractor
of W i

⃝
Ai

⃝:

Almost-sure winning (p = 1)

W 1
□

A1
□

W 2
□

A2
□

...

W k′
□

Ak′
□

PosWin □

ASWin ⃝

Almost-sure winning
region of player □W i

□:

Positive □-attractor
of W i

□
Ai

□:

Arbitrary 0 < p < 1

Follow value class construction as illustrated in [2].

•Guess the probability pv of player⃝ satisfyingWMP(ℓ)
from each vertex v.

•This yields a partition of vertices in the graph, called
value classes.

•For each value class, check if the players almost-surely
win the objective WMP(ℓ) ∪ Reach(Bnd).

Memory

The memory of a strategy is the minimum number of
states required to describe the strategy.
Player 1 requires ℓ memory.
Player 2 requires |V | · ℓ memory.

Results

For the WMP(ℓ) objective,

• positive winning winning is in P

• almost-sure winning winning is in P

• arbitrary p is in NP ∩ coNP

References

[1] K. Chatterjee, L. Doyen, M. Randour, and J-F. Raskin.“Looking at
mean-payoff and total-payoff through windows”. In: Information
and Computation 242 (2015), pp. 25–52.

[2] K. Chatterjee, T. A. Henzinger, and F. Horn. “Stochastic Games
with Finitary Objectives”. In: MFCS. Springer Berlin Heidelberg,
2009, pp. 34–54.

TACAS 2024 Posters

Btor2-Cert: A Certifying Hardware-Verification
Framework Using Software Analyzers

Zsófia Ádám, Dirk Beyer, Po-Chun Chien,
Nian-Ze Lee, and Nils Sirrenberg

adamzsofi@edu.bme.hu, nils.sirrenberg@campus.lmu.de,
{dirk.beyer,po-chun.chien,nian-ze.lee}@sosy.ifi.lmu.de

Presentation at TACAS 2024: 12:00, Thursday, April 11, Room: TBD

Certifying and Validating Verification

Task T Certifying Verifier

Verdict v

Witness ω Witness Validator

Verdict v′Certified if v = v′

Our Motivation
• Explainable and trustworthy HW verification (HV)
• SW verification (SV) techniques for HW

Our Contributions
• A certifying HV framework using SV techniques
• A translator from SW witnesses to HW witnesses
• A witness validator for the Btor2 HW modeling language [6]
• Complementing HV with certified results from SV

Certifying HV Using Translation and SV

HW Task TH Task Translator SW Task TS Certifying SW Verifier

SW Witness ωSWitness Translator

HW Witness ωH HW Witness Validator

Verdict v′Verdict v

Certifying HW Verifier

Certified if v = v′

Btor2-Cert instantiates the framework with Btor2C [1] as frontend
and SW verifiers that export GraphML witnesses [2] as backend.

HW-to-SW Translation via Btor2C [1]
1 sort bitvec 8

2 sort bitvec 1

3 constd 1 42

4 constd 1 2

5 zero 1

6 state 1 ; a

7 state 1 ; b

8 input 1 ; in

9 init 1 6 4 ; a init to 2

10 init 1 7 5 ; b init to 0

11 eq 2 6 5 ; a == 0

12 eq 2 7 4 ; b == 2

13 eq 2 8 3 ; in == 42

14 and 2 11 12

15 and 2 13 14

16 bad 15

17 one 1

18 srl 1 6 17

19 xor 1 7 17

20 next 1 6 18

21 next 1 7 19

1 extern void abort(void);
2 extern unsigned char nondet_uchar();
3 void main() {
4 typedef unsigned char SORT_1;
5 SORT_1 a = nondet_uchar();
6 SORT_1 b = nondet_uchar();
7 a = 2;
8 b = 0; // Omit for unsafe version
9 for (;;) {

10 SORT_1 in = nondet_uchar();
11 if (a == 0 && b == 2 && in == 42) {
12 ERROR:
13 abort();
14 }
15 a = a >> 1;
16 b = b ^ 1;
17 }
18 }

Witness Translation
q0start

q1

q2

q3

qE

o/w

o/w

o/w

o/w

6: b==2

10: ⊤

10: ⊤

10: in==42

sat

b0

#0

1 00000010 ; b==2

@0

@1

@2

0 00101010 ; in==42

.

s0start

s1b>=0 && b<=1

o/w

o/w

8: ⊤

1 sort bitvec 8

2 sort bitvec 1

3 zero 1

4 one 1

5 input 1 ; state "b"

6 ugte 2 5 3 ; b >= 0

7 ulte 2 5 4 ; b <= 1

8 and 2 6 7

9 output 8

Violation Witness Validation

C Program

Violation
Witness

Btor2 Circuit

Input/State Value
Extractor

Btor2
Violation Witness

HW Simulator
(BtorSim) Verdict

Btor2-Val for Violation WitnessesWitness Translation

Correctness Witness Validation
Invariant
Quality

C Program

Correctness
Witness

Btor2 Circuit

Invariant
Extractor

Btor2
Witness Circuit

Circuit
Instrumentor

Instrumented
Circuit(s) HW Verifier Verdict

Btor2-Val for Correctness WitnessesWitness Translation

Summary of Experimental Results
On 758 safe and 456 unsafe Btor2 verification tasks, Btor2-Cert achieved:

• Translation of all violation and 97 % correctness witnesses,
• Effective and efficient validation vs. compared validators, e.g., LIV [4] and CPA-w2t [3], and
• Certified bugs in 8 % of the unsafe tasks with CBMC [5] that HV overlooked

Invariant Quality
Three user-defined quality levels for invariants:

• Invariant (containing all reachable states)
• Safe invariant (implying safety property)
• Safe and inductive invariant

References
[1] Beyer, D., Chien, P.C., Lee, N.Z.: Bridging hardware and software analysis with Btor2C: A word-level-circuit-to-C

translator. In: Proc. TACAS. pp. 1–21. LNCS 13994 (2023)
[2] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.: Verification witnesses. ACM Trans.

Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022)
[3] Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses: Execution-based validation of verification

results. In: Proc. TAP. pp. 3–23. LNCS 10889 (2018)
[4] Beyer, D., Spiessl, M.: LIV: A loop-invariant validation using straight-line programs. In: Proc. ASE. pp. 2074–2077 (2023)
[5] Clarke, E.M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Proc. TACAS. pp. 168–176. LNCS 2988

(2004)
[6] Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC, and Boolector 3.0. In: Proc. CAV. pp. 587–595.

LNCS 10981 (2018)

Try Btor2-Cert!

Artifact DOI: 10.5281/zenodo.10548597

Accurately Computing Expected Visiting Times and Stationary
Distributions in Markov Chains
Hannah Mertens, Joost-Pieter Katoen, Tim Quatmann, Tobias Winkler

Expected Visiting Times (EVTs) [2]
• Describe the expected time a Markov chain spends in each state.
• Characterized as the unique solution of a linear equation system.
• Useful for obtaining reachability probabilities for multiple states, stationary

distributions, and expected rewards.

s1

1

s2

0.9

s3

100

s4

∞
0.9

0.1

1 0.01

0.99 1

Contributions
• Sound and scalable algorithms for

computing EVTs.
• Optimized methods for computing stationary

distributions and conditional expected rewards
by leveraging EVTs.

• An implementation in Storm [1].
• An experimental evaluation.

Applications of EVTs
Reachability probabilities:
• Computing reachability probability

of each BSCC reduces to EVTs [2].
• One linear equation system instead

of one per BSCC.
Stationary distribution:
• Sound bounds on the stationary

distribution via EVTs.
• Significantly faster than existing

techniques [3, 5].
Conditional expected reward:
• Given the EVTs, compute the ex-

pected rewards conditioned on
reaching each BSCC.

• One linear equation system rather
than one per BSCC.

Uniform Distribution Generator
For a given parameter N ≥ 1, we verify that Lumbroso’s Fast Dice Roller [4] program
produces a uniformly distributed output in {1, . . . , N} by computing the stationary
distribution of the corresponding DTMC.

s0

s1

s2

s3

s4

s5

s6

1

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

1

1

1

1

1

1 103 104

101

103

≤ 1

OOR

N

tim
e

in
se

co
nd

s

Classic/LUx Classic/gmres EVT/LUx EVT/II

Approximating EVTs
Value iteration (VI):
• Characterize EVTs as the fixed point of an operator.
• Iteratively apply the operator.
• Converges to the unique fixed point in the limit,

but no sound stopping criterion.
Interval iteration (II):
• Converge to the fixed point from above and below.
• Stop when the difference between under- and over-

approximations is small enough
 Sound precision guarantees.

Computing Stationary Distributions via EVTs

10 20 30 40 50 60 70
≤1

101

102

103

solved instances (out of 73)

tim
e

in
se

co
nd

s

EVT/LUx

EVT/gmres
EVT/II
ap-naive [5]
ap-sample [5]
prism/explicit [3]

References
[1] Christian Hensel et al. “The Probabilistic Model Checker Storm”. In: Int. J. Softw. Tools Technol. Transf. 2022.
[2] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Undergraduate Texts in Mathematics. 1976.
[3] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “PRISM 4.0: Verification of Probabilistic Real-Time Systems”. In: CAV. 2011.
[4] Jérémie O. Lumbroso. “Optimal Discrete Uniform Generation from Coin Flips, and Applications”. In: CoRR abs/1304.1916 (2013).
[5] Tobias Meggendorfer. “Correct Approximation of Stationary Distributions”. In: TACAS. 2023.

CTMCs with Imprecisely Timed Observations

thom.badings@ru.nl
www.thombadings.nl

Thom Badings, Matthias Volk, Sebastian Junges, Mariëlle Stoelinga, Nils Jansen

We compute reachability probabilities*
for CTMCs, conditioned on a sequence
of (imprecisely timed) observations.

*and other measures, such as weighted reachability or rewards

Failure probability?
Past observations

(imprecisely timed)

Current state
(conditioned)

Obs. #1 Obs. #2

1. Motivation
Continuous-time Markov chains (CTMCs)
◦ Stochastic processes subject to random timing
◦ Assumption: states are observed as colors
◦ System monitoring: determine current state,
based on a sequence of past observations

s0

s1

s2

λa

λa λd

λd

Main question
How to compute the current state (and predict
failures), if observation times are uncertain?

+ ?

◦ Observation times might be imprecisely known
◦ Example: an inspection was done last week,
but the precise time is unknown

Time

2. Problem statement
◦ Sequence of timed observations (“evidence”),
each of which consists of:
1. A known color (state label)
2. An uncertain observation time (e.g., interval)

Problem
Compute the maximum (weighted) probability
of reaching a subset of (failed) states, over all
instances of the evidence

◦ Fixing a precise time for every observation
gives an instance of the imprecise evidence

Every instance gives a
different conditional

reachability probability

3. Our 3-step unfolding method
1. Unfold CTMC + evidence into an MDP

2. Condition unfolded MDP on the evidence

3. Abstract (infinite) MDP into (finite) interval MDP

0 t�T̃ 1
1 T̃ 1

2

0 t�T̃ 1
1 T̃ 2

1 T̃ 1
2 T̃ 2

2

◦ Each interval MDP state represents a time interval
◦ Iterative abstraction refinement by splitting intervals

◦ Infinitely many
states/actions
◦ Actions model
evidence times

◦ Loop back every
transition that vio-
lates the evidence

s0, 0

s1, 0

s2, 0

s0, t1

s1, t1

s2, t1

s0, t2

s1, t2

s2, t2

s0, t�

s1, t�

s2, t�

s0, 0

s1, 0

s2, 0

s0, t1

s1, t1

s2, t1

s0, t2

s1, t2

s2, t2

s0, t�

s1, t�

s2, t�

Check out
our paper!

4. Evaluation
◦ Implemented in the model checker
◦ Tested on 5 CTMCs with 3 - 576 states
◦ Evidences with 2 - 15 observations

Tight lower/upper bounds on
conditional failure probability

◦ Open challenges:
▪ Tighter bounds for transient

CTMC probabilities
▪Better refinement strategies
▪ Improve analysis techniques

for iMDPs (policy iteration)

?

Time 1 Time 2
1 10 60 600

0.9

0.95

1

W (Ω)′

Time [s]

CESAR: Control Envelope Synthesis via Angelic Refinements
Aditi Kabra Jonathan Laurent Stefan Mitsch André Platzer

platzer@kit.eduakabra@cs.cmu.edu jonathan.laurent@kit.edu smitsch@depaul.edu

CESAR: Formally Justified Synthesis

Correct by Construction Control Envelope

Human provides shape of hybrid system’s model

Control Envelopes
•Define families of safe

controllers
• Full system monitored

for adherence at
runtime
•Higher order constraint

compared to
controllers: good
solution permits as
many safe control
solutions as possible

Assuming

Control Loop

?

if

if

if

Safety
Contract

Holds

Environment
(Differential
Dynamics)

...

action n

action 1?

?

?

action 2

Synthesis procedure fills holes ().
Which action is safe when?

?

Evaluation: Varying Control Challenges

[2] Fulton, N., Mitsch, S., Bohrer, R., Platzer, A.: Bellerophon: Tactical theorem proving for hybrid systems. In: Ayala-Rincon, M., Munoz, C.A. (eds.) ITP. LNCS, vol. 10499, pp. 207–224. Springer (2017).

[1] Platzer, A., Quesel, J.: European train control system: A case study in formal verification. In: Formal Methods and Software Engineering, 11th International Conference on Formal Engineering Methods, ICFEM 2009

Safe Actions Only

Action
C

Action
A

Action
B

Unverified Controller

Control
Envelope

Characterize Solution Implicitly using
Hybrid Systems Game Theory …

… Then Extract an Explicit Solution

Control Loop

Wins
when

Safety
Contract

Holds

Environment
(Differential
Dynamics)

...
action n

action 1

action 2

• Differential Game Logic (dGL) formalizes how two
adversarial agents Angel () and Demon () take
decisions to attain win conditions

• Use agent decisions to characterize the behavior of
optimal control in a maximally difficult
environment

Reduce dGL formulas to solution formulas in
propositional arithmetic using the axioms of dGL and
refinements.
Refinements transform games to be easier to reduce

yet harder for the controller to win.

One-Shot Unrolling
What if the controller can
only run one action for
unbounded time?

Bounded Unrolling
What happens when the
controller switches
actions?

Safe for
action
forever

Safe for
action
then
forever

CESAR automatically generates
control conditions for all
benchmarks.

Some benchmarks have non-
solvable dynamics, some require a
sequence of clever control actions
to reach an optimal solution, and
some have state-dependent
fallbacks where the current state
of the system determines which
action is “safer”.

[1]

[2]

21

3

4

5

Use Halide, an existing DSL targeting the image & tensor domain.

1. The code is written in an algorithm part that captures the
functionality.

2. Add annotations to the algorithm.
3. Front-end approach:
a. Encode the algorithm with matching annotations.
b. Verify with VerCors.

4. The algorithm is transformed using a schedule, producing optimised
C code.

5. Back-end approach:
a. HaliVer produces matching annotations for the optimised code,

using similar transformations as the Halide compiler.
b. Verify the optimised code using VerCors, proving memory safety

and functional correctness properties.

Problem

Idea

Conclusion

Contact info
l.b.v.d.haak@tue.nl
cheops.win.tue.nl/

Try it out yourself!
github.com/sakehl/HaliVerExperiments

VerCors Encoding

AnnotationsMatching
Annotations

Halide Algorithm Optimised C
program

Matching
AnnotationsSchedule

Front-end Back-end

VerCors VerCors

HaliVer: Deductive Verification and
Scheduling Languages Join Forces

Verifying optimised parallel code is difficult
because it
● uses intricate features that are hard to reason
about.

● requires precise annotations that match the code,
which is often harder than writing the code.

 loop_invariant (∀ x, y; 0≤x ∧ x<1024 ∧ yo*8≤y ∧ y<yo*8+10; Perm(_blur_x[(y -
 yo*8)*1024+x], 1\2));
 loop_invariant (∀ x, y; 0≤x ∧ x≤1023 ∧ yo*8+yi≤y ∧ y≤yo*8+yi+2; _blur_x[(y -
 yo*8)*1024+x] == (p_i(y*1026+x)+p_i(y*1026+x+1)+p_i(y*1026+x+2))/3);
 loop_invariant (∀ xif, xof; 0≤xof ∧ xof<512 ∧ 0≤xif ∧ xif<2; Perm(blur_y[(yo*8
 +yi)*1024+xof*2+xif], 1\1));
 loop_invariant (∀ xof, xif; 0≤xof ∧ xof<xo ∧ 0≤xif ∧ xif<2;
 blur_y[(yo*8+yi)*1024+xof*2+xif] ==
 ((p_i((yo*8+yi)*1026+xof*2+xif)+p_i((yo*8+yi)*1026+xof*2+xif+1)+p_i((yo*8+yi)*102
 6+xof*2+xif+2))/3+
 (p_i((yo*8+yi)*1026+xof*2+xif+1026)+(p_i((yo*8+yi)*1026+xof*2+xif+1027)+p_i((yo*8
 +yi)*1026+xof*2+xif+1028)))/3+
 (p_i((yo*8+yi)*1026+xof*2+xif+2052)+p_i((yo*8+yi)*1026+xof*2+xif+2053)+p_i((yo*8+
 yi)*1026+xof*2+xif+2054))/3)/3);
 for (int xo = 0; xo<0+512; xo++)
 {
 int _t9 = (xo+_t15);
 blur_y[((xo+_t16) * 2)] = ((_blur_x[(_t9 * 2)]+(_blur_x[((_t9 * 2)+1024)]+_blur_x
 [((_t9 * 2)+2048)])) / 3);
 int _t10 = (xo+_t15);
 blur_y[(((xo+_t16) * 2)+1)] = ((_blur_x[((_t10 * 2)+1)]+(_blur_x[((_t10 * 2)+1025)
]+_blur_x[((_t10 * 2)+2049)])) / 3);
 } // for xo
 } // for yi
 } // alloc _blur_x
} // for yo
return 0;
}

HaliVer

Lars B. van den Haak1, Anton Wijs1, Marieke Huisman2 & Mark van den Brand1
1Eindhoven University of Technology 2University of Twente

Results & Future work
Results
● 8 different algorithms.
● 23 optimisation schedules.
● Without annotation effort proves
memory safety for almost all programs.

● With annotation proves functional
correctness properties.

● Reduces manual annotation effort by an
order of magnitude.

Future work
● Target GPUs.
● Vectorisation optimisation.
● Verify arbitrary bounds (leads to non-linear
arithmetic).

● Add Axiomatic Data Types and user defined pure
functions to annotation language.

JPF: From 2003 to 2023
Cyrille Artho, Pavel Parízek, Daohan Qu, Varadraj Galgali, Pu (Luke) Yi
KTH Royal Institute of Technology; Charles University; Nanjing University; Belgaum; Stanford University

JPF: A bytecode analysis framework

System under test
(Java bytecode)

*.class

*.jpf

JPF configuration

JPF core

abstract virtual machine

JPF
extension

Verification
artifact

● execution semantics
● program properties

● report
● test case
● specification

Beyond Testing

Testing Model Checking

● only one trace
● may miss defects
● scalable

● all (many) traces
● finds all defects
● resource-hungry

JPF for Java 11 development

Thanks to Google Summer of Code!

Software Model Checking

Strength: counterexample on failure

History of JPF

JPF successes

● Reliability analysis of NASA software components
● Locking protocol analysis of real-time kernel
● Analysis of java.nio libraries
● Teaching concurrency in Master's courses
● Detection of flaky tests

1999

2000

2003

2005

2009

2017

NASA Ames: JPF
as front-end to
SPIN

Reimplementation
as concrete VM for
model checking

Extension
interface

Open sourced on
sourceforge

Moved to own
server;
participate in GSoC

Moved to GitHub

2005–today: Many extensions: Symbolic execution, native methods,
analysis of networked software, analysis of Android apps

{T1, T2}

{T2} {T1}

{} {}

T1

T1

T2

T2

ba
ck

tr
ac

k

Challenges
private native int encode(...)
@MJI public int encode__Ljava_lang_...

invokedynamic makeConcatWithConstants
BootstrapMethods: REF_... makeConcatWith...

JPF core runs in Java (on host JVM)

https://github.com/javapathfinder/jpf-core

5

Generics,
for-each

Annotations,
bytecode
changes

6

invokedynamic,
varargs

7

Lambda
expressions

8

Modules,
compact
strings,

internal APIs

11

Records,
sealed

classes,
…

17
Java

version

Native
methods

Bootstrap
methods

MATA: A Fast and Simple
Finite Automata Library

David Chocholatý Tomáš Fiedor Vojtěch Havlena
Lukáš Holík Martin Hruška Ondřej Lengál Juraj Síč

Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

What is MATA

Mata is a well-engineered, fast, and simple automata library in C++. It is maintainable and understandable.
It has a simple architecture allowing a new user, a researcher, to quickly prototype new algorithms and thoroughly
optimize the final implementation. Mata targets string constraint solving, reasoning about regular expressions,
regular model checking, student projects, and research prototypes. It comes with a large benchmark from string
constraint solving, regular model checking, and reasoning about regular expressions.

Distinctive Features
Fast and simple.
Explicit representation of the transition relation.
SOTA algorithms to work with nondeterminism.
Modern development workflow and technologies.
Easily extensible and modifiable.

Well-documented, examples, testing infrastructure.
High-level API with sane defaults,
low-level API for maximal optimization.
Python interface.
A basis for a modular automata format .mata.

Usage

An example of using the C++ interface for Mata. The code loads automata from a file in the .mata format
with bitvectors on transitions, mintermizes them, constructs NFAs from the loaded intermediate representations
over the alphabet {a, b, c}, trims and determinizes the NFAs, adds a new transition with a new final state. It
then creates a second automaton accepting the word cbba, and optionally concatenates the initial NFA with
itself and prints the result in the .mata format, shown in the right-hand side.

#include "mata/parser/mintermization.hh"
#include "mata/nfa/nfa.hh"
#include "mata/nfa/builder.hh"

#include <fstream>

using namespace mata;
using namespace mata::nfa;

int main(int argc, char *argv[]) {
std::fstream file(argv[1], std::ios::in);
for (IntermediateAut& inter_aut:

IntermediateAut::parse_from_mf(parser::parse_mf(file, true))) {
if (inter_aut.alphabet_type == IntermediateAut::AlphabetType::BITVECTOR) {

inter_aut = Mintermization{}.mintermize(inter_aut);
}
EnumAlphabet alphabet{ 'a', 'b', 'c' };
Nfa aut{ nfa::builder::construct(inter_aut, &alphabet) };
nfa::determinize(aut.trim());
State new_final{ aut.add_state() };
aut.delta.add(*aut.initial.begin(), 'a', new_final);
aut.final.insert(new_final);
Nfa word_aut{ nfa::builder::create_single_word_nfa(Word{ 'c', 'b', 'b', 'a' })
};

if (nfa::is_included(word_aut, aut) && aut.is_in_lang(Word{ 'a', 'b' })) {
aut = nfa::concatenate(aut, aut);
aut.print_to_mata(std::cout);

}
}
return EXIT_SUCCESS;

}

@NFA-explicit
%Alphabet-auto
%Initial q0
%Final q5 q6 q7
q0 97 q0
q0 97 q3
q0 98 q1
q0 99 q0
q1 97 q2
q1 97 q4
q1 97 q7
q1 98 q1
q1 98 q5
q1 99 q4
q2 97 q4
q2 97 q7
q2 98 q5
q2 99 q4
q3 97 q4
q3 97 q7
q3 98 q5
q3 99 q4
q4 97 q4
q4 97 q7
q4 98 q5
q4 99 q4
q5 97 q6
q5 98 q5

Architecture

The main determinant of Mata is its three-
layered data structure Delta for the transi-
tion relation: an ordered vector indexed by
states. For each state, an ordered vector of
transitions over symbols, for each symbol, an
ordered vector of target states.

0 1 2 3 4 5 6 7 8 9

std::vector<StatePost>

Source states

Delta

a c e r x ϵ

OrdVector<SymbolPost>

Transition symbols

StatePost

1 3 5 6

OrdVector<State>

Target states

SymbolPost

Supported Operations

Fine-grained modification of NFAs.

Boolean language operations (∩,∪, ·).
Mintermization to handle large alphabets.
Antichain-based language inclusion,
equivalence, membership, emptiness.

Determinization, minimization, simulation
reduction.
ε-transitions, ε-product, ε-removal.
Rich visualization interface.
Parsing of regexes (from RE2) and .mata format.

Python Interface

Mata provides an easy-to-use Python interface, as fast as C++ ($ pip install libmata).

An example of using Python interface for Mata. The code loads automata from regular expressions, concate-
nates them, and displays the trimmed concatenation with conditional formatting.

from libmata import nfa, alphabets, parser, plotting
aut1 = parser.from_regex('((a+b)*a)*')
aut2 = parser.from_regex('aab*')
con_aut = nfa.nfa.concatenate(aut1, aut2).trim()
plotting.store()['alphabet'] = \

alphabets.OnTheFlyAlphabet.from_symbol_map({'a':97, 'b':98})
e_h = [

(lambda aut, e: e.symbol == 98, {'color':'black'}),
(lambda aut, e: e.symbol == 97, {'style':'dashed','color':'black'})

]
n_h = [

(lambda aut, q: q in aut.final_states,
{'color':'red','fillcolor':'red'}),

(lambda aut, q: q in aut.initial_states,
{'color': 'orange', 'fillcolor': 'orange'}),

]
plotting.plot(con_aut, with_scc=True,

node_highlight=n_h, edge_highlight=e_h)
4 b

3

a

0

a

a

1

a

a

2

b

a

a

Tool

Available on GitHub.

References

[1] Almeida, A., Almeida, M., Alves, J., Moreira, N.,

Reis, R.: Fado and guitar: Tools for automata

manipulation and visualization. CIAA’09, (2009).

[2] Evans, C.: Automata (2023), https:
//github.com/caleb531/automata

[3] Isberner, M., Howar, F., Steffen, B.:

AutomataLib, https:
//learnlib.de/projects/automatalib/

[4] Lengál, O., Šimáček, J., Vojnar, T.: VATA: A

library for efficient manipulation of

non-deterministic tree automata. TACAS’12,

(2012)

[5] Lombardy, S., Marsault, V., Sakarovitch, J.:

Awali, a library for weighted automata and

transducers (version 2.0) (2021),

http://vaucanson-project.org/Awali/2.0/

[6] Mller, A., et al.: Brics automata library,

https://www.brics.dk/automaton/

[7] Veanes, M.: A .NET automata library,

https://github.com/AutomataDotNet/
Automata

Experimental Evaluation

We compared Mata against Vata [4], Brics [6], Awali [5], Automata.net [7], AutomataLib [3], FAdo [1], and
Automata.py [2], on a benchmark from string constraint solving, reasoning about regexes, regular model check-
ing, and solving arithmetic formulae. Mata consistently outperforms all other libraries on all benchmarks in all
operations. Mata is also the backbone of the efficiency of the SMT solver Z3-Noodler (with a poster nearby),
which outperforms the state of the art on many standard benchmarks.

Cactus plots show cumulative run time. Time axes are logarithmic.
Tables show statistics for the benchmarks. We list the number of timeouts (TO, 60 s), average time on solved
instances (Avg), median time over all instances (Med), and standard deviation over solved instances (Std). Best
values are in bold, times are in milliseconds unless seconds are explicitly stated. ∼0 means a value close to zero.

Results per Benchmark

0 20 40 60 80
100

120
140

0

100

101

102

ti
m

e
 [

s]

armc-incl

0 50
100

150
200

250
300

350
0

100

101

102

b-smt

0
100

200
300

400
500

0
100

101

102

103

email-filter

0 25 50 75
100

125
150

175
0

100

101

102

ti
m

e
 [

s]

lia-explicit

automata.net

automata.py

automatalib

awali

brics

fado

mata

mata-sim

vata

0 25 50 75
100

125
150

175
0

100

101

lia-symbolic

0
100

200
300

400
500

600
700

0

100

101

102

ti
m

e
 [

s]
noodler-compl

0
100

200
300

400
0

100

101

102

103

noodler-concat

0
1000

2000
3000

4000
5000

instance

0

100

101

102

103

ti
m

e
 [

s]

noodler-inter

0 20 40 60 80
100

instance

0

100

101

102

103
param-inter

0 50
100

150
200

250

instance

0

100

101

102

103

param-union

armc-incl (136) b-smt (384) email-filter (500) lia-explicit (169) lia-symbolic (169)
TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std

Mata 0 174 2 1 s 0 1 1 1 0 1 ∼0 9 0 42 6 356 0 2 2 6
Awali 7 1 s 17 3 s 0 6 6 4 0 46 4 162 6 21 21 16 0 8 7 14
Vata 0 324 43 577 0 7 7 10 0 42 2 322 0 121 51 671 1 11 10 11
Automata.net 9 1 s 125 3 s 0 148 153 30 0 69 66 30 0 113 117 49 6 103 107 33
Brics 5 659 34 2 s 4 43 43 19 6 103 17 280 0 66 62 63 6 55 60 33
AutomataLib 10 843 669 1 s 7 390 126 3 s 48 516 390 521 0 458 285 1 s 6 164 173 52
FAdo 58 8 s 22 s 10 s 9 109 112 67 64 6 s 1 s 11 s 1 1 s 727 2 s 6 135 149 105
Automata.py 10 913 133 3 s 334 24 TO 15 4 520 19 2 s 1 372 167 894 6 35 35 25

noodler-compl (751) noodler-conc (438) noodler-inter (4872) param-inter (267) param-union (267)
TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std TO Avg Med Std

Mata 0 39 ∼0 401 0 100 10 286 0 ∼0 ∼0 3 156 1 s TO 4 s 0 166 7 326
Awali 0 73 2 638 0 490 55 1 s 6 3 1 7 157 6 s TO 7 s 0 1 s 81 3 s
Vata 0 57 2 296 - 2 4 ∼0 22 159 7 s TO 8 s 14 6 s 270 12 s
Automata.net 0 53 39 110 - 0 26 24 9 157 8 s TO 10 s 0 220 47 314
Brics 0 47 8 190 0 136 35 204 0 7 3 21 159 6 s TO 6 s 0 223 50 307
AutomataLib 0 293 143 793 - 17 276 216 675 227 8 s TO 13 s 227 10 s TO 15 s
FAdo 10 646 5 4 s 189 10 s 25 s 13 s 10 271 52 2 s 250 15 s TO 20 s 115 5 s 12 s 11 s
Automata.py 3 263 5 2 s - 5 38 3 353 254 4 s TO 6 s 245 11 s TO 16 s

Results per Operation

0
200

400
600

800
1000

1200
1400

0
100

101

102

ti
m

e
 [

s]

complement

automata.net

automata.py

automatalib

awali

brics

fado

mata

mata-sim

vata

0
1000

2000
3000

4000
5000

6000
7000

8000
0

100

101

102

103

trim

0
1000

2000
3000

4000
5000

6000
7000

0
100

101

102

103

ti
m

e
 [

s]

emptiness

0
100

200
300

400
500

600
0

100

101

102

103

inclusion

0
100

200
300

400

instance

0
100

101

102

103

ti
m

e
 [

s]

concatenation

0
1000

2000
3000

4000
5000

6000

instance

0
100

101

102

103

intersection

0
100

200
300

400
500

600

instance

0
100

101

102

103
union

complement concatenation emptiness inclusion intersection trim union

Avg Med Std Avg Med Std Avg Med Std Avg Med Std Avg Med Std Avg Med Std Avg Med Std

Mata 25 1 315 78 8 235 ∼0 ∼0 2 37 ∼0 576 295 ∼0 3 s 76 ∼0 828 14 ∼0 45
Awali 38 2 462 166 22 402 17 ∼0 138 250 2 2 s 312 ∼0 2 s 516 ∼0 4 s 173 ∼0 527
Vata 36 3 294 - 14 ∼0 130 85 1 374 699 ∼0 4 s 408 ∼0 3 s 2 s ∼0 5 s
Automata.net 73 59 89 - ∼0 ∼0 ∼0 245 43 1 s 621 14 4 s 31 9 165 69 6 163
Brics 46 24 140 136 35 204 ∼0 ∼0 ∼0 204 10 1 s 115 4 1 s - 99 2 232
AutomataLib 75 31 657 - 3 2 5 60 42 102 91 59 748 - 311 2 3 s
FAdo 320 3 2 s 6 s 10 s 10 s 223 ∼0 2 s 3 s 84 8 s 479 48 3 s 10 3 70 1 s 84 6 s
Automata.py 226 25 2 s - 53 ∼0 1 s 263 6 1 s 39 2 479 - 203 TO 377

https://github.com/VeriFIT/mata/ TACAS 2024, Luxembourg holik@fit.vut.cz

Auction-Based Scheduling
Guy Avni1, Kaushik Mallik2, and Suman Sadhukhan1

1University of Haifa, Haifa, Israel
2 Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

ArXiv link:

Multi-objective Control Problems
Consider a robot in a workspace with the following two objectives:

• Reach trash cans (and empty them) whenever they are full.

• Reach a charging station before the robot’s battery runs out.

The goal: Synthesize a policy for the robot that satisfies both
objectives in every run (possibly infinite).

Problem: Given an environment model, like a graph G =
⟨V,E⟩, and a pair of LTL objectives Φ1 and Φ2 over V , with
Φ1 ∧ Φ2 ̸= False, synthesize a policy (for G, a policy is an
infinite path) that satisfies Φ1 ∧ Φ2.

. .

. .

Which objective
do I prioritize?

Traditional monolithic approach: Synthesize a policy by treating Φ1 ∧ Φ2 as a single objective.

Our decentralized approach: Synthesize local policies for Φ1 and Φ2 and compose them at runtime.

Advantages of the decentralized approach:

• Modularity. If only one of the objectives changes, a recomputation of the policy for the other
objective may be avoided.

• Parallel computation. The local policies, for the given objectives, can be created independently
and in parallel—even by different parties.

The Auction-Based Scheduling Framework
The composition of local policies is nontrivial, because the policies may disagree on their actions at
any given time. Auction-based scheduling is a novel runtime policy-composition framework, where
the policies participate in auctions (aka biddings) for the privilege of executing their favorite actions.

Tenders: policies augmented with bidding capabilities. Let G = ⟨V,E⟩ be a graph and ϕ be an
arbitrary objective over V . We distinguish two types of policies, ones that select actions and ones
that select bids:

• An action policy for ϕ is a function α : V ∗ → V that chooses the next vertex for any given finite
path. Applying α repeatedly from an initial vertex generates an infinite path that satisfies ϕ.

• A bidding policy is a function β : V × [0, 1] → [0, 1] with the constraint that β(v,B) ≤ B
for every v,B. Intuitively, β(v,B) is the proposed bid if the current vertex is v and the current
budget is B; the constraint β(v,B) ≤ B ensures that the bid does not exceed the budget.

A tender τ for ϕ is a tuple ⟨α, β,B⟩, consisting of an action policy α for ϕ, a bidding policy β, and
a real number B ∈ [0, 1] called the threshold budget.

Each tender requires a sufficient initial budget to be able to bid correctly and “serve” the objective it
was designed for. The threshold budget B is the infimum of the set of sufficient initial budgets; a for-
mal explanation of the role of B will be provided in {∗}. The heart of our approach is the composition
operation on two tenders:

The composition of two tenders. Let G = ⟨V,E⟩ be a graph, τ1 = ⟨α1, β1,B1⟩ and τ2 =
⟨α2, β2,B2⟩ be two tenders (for a pair of given objectives). The pre-requisite for the composition:
B1 + B2 < 1. The composition generates an infinite path defined inductively as follows:

• Let v0 ∈ V be the initial vertex, and B1 > B1 and B2 > B2 be the initial budgets allotted to τ1
and τ2, respectively, such that B1+B2 = 1 (feasible, because of the pre-requisite stated above).

• For each prefix v0 . . . vk ∈ V ∗ and for any current budgets B1, B2, let b1 = β1(v
k, B1) and

b2 = β(vk, B2) be the two bids proposed by the respective tenders.

– If b1 > b2 then τ1 wins the current round of auction, pays b1 to τ2 so that B1 := B1 − b1 and
B2 := B2 + b1 are the new budgets, and chooses vk+1 = α1(v

0 . . . vk) as the next vertex.
– If b2 > b1 then τ2 wins the current round of auction, pays b2 to τ1 so that B1 := B1 + b2 and
B2 := B2 − b2 are the new budgets, and chooses vk+1 = α2(v

0 . . . vk) as the next vertex.
– If b1 = b2 then it is tie which is resolved in a predetermined way.

{∗} The role of threshold budgets. Let G be a graph and ϕ be an objective. The threshold budget
B guarantees that there exist α and β such that the composition of the tender τ = ⟨α, β,B⟩ with
any other tender τ ′ (fulfilling the pre-requisite) generates an infinite path satisfying ϕ.

start

Budgets:
B1 =

1
4 +

1
8

B2 =
1
2 +

1
8 Bids:

b1 =
1
4

b2 = 0

Actions:
α1 = go left
α2 = go right

start

B1 =
1
8

B2 =
7
8

b1 =
1
8

b2 =
7
8

α1 = go up
α2 = go down

start

B1 = 1
B2 = 0

Figure 1: An illustration of the framework: Φ1 =
reach one of the trash cans, Φ2 = reach one of the
charging stations, τ1 = ⟨α1, β1,B1⟩ with B1 = 1/4
and τ2 = ⟨α2, β2,B2⟩ with B2 = 1/2; α1, β1, α2, β2
are illustrated through the picture. The current bud-
gets available to the tenders are shown in the boxes
next to the vertices, and the respective bids and ac-
tions are shown on the edges. The current vertex is
the one that is occupied by the robot. We observe
that the tender τ1 wins the first bidding and moves
the robot left. The tender τ2 wins the second bid-
ding and moves the robot down. As a result, both of
the objectives Φ1 and Φ2 are fulfilled.

Decentralised Synthesis w/ Varying Degrees of Synchronization
The decentralized synthesis problem: Given a graph G and a pair of objectives Φ1 and Φ2, syn-
thesize tenders τ1 and τ2, respectively for Φ1 and Φ2, such that their composition fulfills Φ1 ∧ Φ2.

Ideally, the synthesis of τ1 and τ2 should be possible in isolation, without the knowledge of the other
objective. In practice, this may not be always possible, because the pre-requisite B1+B2 < 1 may not
be achievable. Luckily, the thresholds B1 and B2 can be lowered by incorporating some additional as-
sumptions about the other tender. Based on the strength of the assumption, we consider three classes
of decentralized synthesis problems; they are listed below in the order of strengths of the assumptions:

Strong < Assume-Admissible < Assume-Guarantee

Strong Synthesis: Assume the Worst Case (Weakest Assumption)
Advantage: Complete modularity: Each tender remains valid no matter how the other objective is
altered.
Figure 2: The gist of the algorithm for strong synthesis: We solve two independent zerosum bidding games on the same
graph with the individual objectives. The solution of the respective game provides the respective tender. In the two bid-
ding games, it can be shown that the protagonists—Homer and Marge—can win against any adversary with initial budgets
strictly greater than 1/4 and 1/2, respectively. Their respective winning strategies provide us the required α1, β1, α2, β2,
and the thresholds 1/4 and 1/2 provide B1 and B2, respectively. The strong synthesis is successful because B1 + B2 < 1.

start

Compute tenders
τ1 =?
τ2 =?

start

τ1 = ⟨α, β, 14⟩

I can win
with an initial budget

1
4 + ϵ1

for any ϵ1 > 0
(sum of the players’ budgets is 1)

β = 1
4

α = go left

β = ϵ1
α = any

β = 1
2 + ϵ1

α = down

start

τ2 = ⟨α, β, 12⟩

I can win
with an initial budget

1
2 + ϵ2

for any ϵ2 > 0
(sum of the players’ budgets is 1)

β = 0
α = any

β = 1
2 + ϵ2

α = down

β = 1
2 + ϵ2

α = up

Decompose into two
independent

zerosum bidding
games [2, 1]

Theorem: If strong synthesis generates a pair of tenders τ1 and τ2 with B1 + B2 < 1, then the
composition of τ1 and τ2 fulfills Φ1 ∧ Φ2.

The following is an example where strong synthesis fails to generate tenders with B1 + B2 < 1.

Figure 3: Homer and Marge require initial budgets strictly larger than 7/8 and 1/8, respectively. Therefore, B1 = 7/8
and B2 = 1/8, and B1 + B2 ̸< 1.

start

losing

I can win with...
7
8 + ϵ1

I can win with...
1
8 + ϵ2

Assume-Admissible Synthesis: Assume Rational (Admissible) Behavior
When strong synthesis fails, we may make the tenders aware of each other’s objectives and let them
assume that the other tender acts rationally towards its own objective. For example, in both local syn-
thesis problems from Fig. 3, the players become aware that the vertex losing will not be visited by
the other tender if it plays rationally. Therefore, losing can be removed from both games, lowering
the amounts of required initial budgets (which become 3/4 + ϵ1 and 0 + ϵ2, respectively).
Advantage: Modularity modulo unchanged rational behavior: Each tender τi remains valid as long
as the rational actions of the other tender τ3−i remain unchanged. In particular, if the other objec-
tive Φ3−i remains unchanged, the tender τ3−i can be swapped with a different tender τ ′3−i (possibly
implementing an alternate policy) and no adjustment in τi will be needed.

Theorem: For every graph with maximum out-degree 2 and for every pair of ω-regular objectives,
assume-admissible synthesis will have non-empty solutions.

Assume-Guarantee Synthesis: Assume Fulfillment of Contracts (Strongest As-
sumption)
When even assume-admissible synthesis fails, we can use assume-guarantee synthesis where the ten-
ders are synchronized through pre-computed assume-guarantee contracts; the details can be found in
the paper.

References
[1] G. Avni and T. A. Henzinger. A survey of bidding games on graphs. In Proc. 31st CONCUR,

volume 171 of LIPIcs, pages 2:1–2:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[2] A. J. Lazarus, D. E. Loeb, J. G. Propp, W. R. Stromquist, and D. H. Ullman. Combinatorial games
under auction play. Games and Economic Behavior, 27(2):229–264, 1999.

Contact: gavni@cs.haifa.ac.il, kaushik.mallik@ist.ac.at, and ssadhukh@campus.haifa.ac.il

Most General Winning Secure Equilibria

Obj□Obj◯

door

I can block

the door

to win myself,

I should open the
door infinitely often

to win myself,

I should not block
the door forever

assump□assump◯

only I can

open the door

Secure equilibrium
alternately use the
middle passage

block the door
forever

= cooperative strategy + punishment strategy

How to generalize secure equilibria
to have more flexibility for the systems?

Rational Players in a Graph GameRational Robots in a Workspace
a

d ge

ba

d

Obj◯ = infinitely often a Obj□ = infinitely often d

 = Goal◯ (Obj◯, ¬Obj□) = Goal□ (Obj□, ¬Obj◯)

vs

Winning Secure equilibrium (WSE)

 (,) both winsStr◯ Str□ ⊨‣

‣ loses losesStr◯ ⊨ ◯ ⇒ □
‣ loses losesStr□ ⊨ □ ⇒ ◯

..a e→

..b e →

..e d→

..d a →

cooperative + punishment

..e g→

..d a →+

+

a

d ge

ba

d

Generalizing Winning Secure Equilibria

(,)Str◯ Str□

Obj◯ = infinitely often a Obj□ = infinitely often d

vs

 = never (e g)assump□ → = never (b g)assump◯ →
 inf (e) inf (e d) ∧ ⇒ →

 Ψ◯ = assump◯

 Ψ□ = assump□

 ∧ (assump□ ⇒ Obj◯)

 ∧ (assump◯ ⇒ Obj□)

Most General WSE
 (Ψ◯, Ψ□)

each is realizable by Player

every with
forms a WSE

Ψ◯ ∧ Ψ□ ≡ Obj◯ ∧ Obj□
Ψi i
(Str◯, Str□) Stri ⊨ Ψi

‣

‣

‣

•most general WSE = collection of equilibria as
dvddindependently realizable specifications

•sound and efficient but incomplete algorithm

•generalized to k-player games (even with Env)

Future Works

•extend the notion to other equilibria,
e.g., subgame-perfect equilibria

•quantitative settings

Contribution

Satya Prakash Nayak and Anne-Kathrin Schmuck MPI-SWS, Germany

Pareto Curves for Compositionally Model Checking
String Diagrams of MDPs

Kazuki Watanabe1,2*, Marck van der Vegt3*, Ichiro Hasuo1,2, Jurriaan Rot3 , Sebastian Junges3

1: National Institute of Informatics, Tokyo, 2: SOKENDAI (The Graduate University for Advanced Studies), Hayama,
3: Radboud University, Nijmegen, the Netherlands

kazukiwatanabe@nii.ac.jp *Equal contribution

Accepted in 30th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2024

Setting: Optimizing Reachability Probabilities of String Diagrams of MDPs
Scheduler Synthesis + Its Performance Guarantee

Main Contribution: Compositional Approximation Algorithm for String Diagrams of MDPs

Experiments and Related Work:

Compositional Exact Algorithm for String Diagrams of MDPs

VeSCMul: Verified Implementation of
S-C-Rewriting for Multiplier Verification

Mertcan Temel
mert.temel@intel.com

Intel Corporation

Formal verification of multipliers, especially industrial designs,
is difficult. We use the S-C-Rewriting method to efficiently
verify a variety of multiplier-centric hardware designs. This
work presents a custom tool, VeSCMul, that packs this method
and other tools for easy verification of RTL multipliers.
VeSCMul is fully verified itself, very fast, and compatible with
industrial designs.

Abstract

• A custom term-rewriting method for multipliers: a set of
rewrite rules convert both the RTL expressions and high-
level specification to the same final form.

• Developed for industrial designs: method supports many
configurations such as shifted, truncated, saturated outputs;
multiply, multiply-add, dot product…

• Very fast & scales well: 64x64-bit multipliers are verified in
seconds, 1024x1024-bit in minutes (much faster than any
other method).

• Reliable verification results: soundness proofs are done
through ACL2 theorem prover and programming language.

• Caveat: requires separation of multiplier’s adder
components from the rest of the circuit design components.

What is S-C-Rewriting?

VeSCMul is a tool that implements S-C-Rewriting, and an
adder detection program for full automation. It works with other
utilities to support verification of complex Verilog designs.

1. Based on target design, user states the conjecture to prove.
2. Included tools (ACL2’s SV/SVTV) parses Verilog code

and creates flattened symbolic simulation vectors.
3. As S-C-Rewriting depends on adder separation, the tool

automatically finds and marks adders.
4. S-C-Rewriting is employed to rewrite both the design and

spec to the same form.
5. If rewriting does not finalize the correctness proof, rewritten

form may be passed to another tool (FGL) for finalizing the
proof or counterexample generation.

What is VeSCMul?

VeSCMul is open-source and distributed with public ACL2
(interactive theorem prover). Events to verify a 64x64-bit
multiplier:

(include-book "projects/vescmul/top" :dir :system)

(vescmul-parse
 :name my-multiplier-example
 :file "DT_SB4_HC_64_64_multgen.sv"
 :topmodule "DT_SB4_HC_64_64")

(vescmul-verify
 :name my-multiplier-example
 :concl (equal RESULT
 (loghead 128 (* (logext 64 IN1)
 (logext 64 IN2)))))

• include-book event loads VeSCMul and required libraries.
• vescmul-parse event parses the target design.
• vescmul-verify event attempts to verify the conjecture.

RESULT is 128-bit wide design output and should be signed
multiplication of 64-bit wide inputs IN1 and IN2. logext
sign-extends, * multiplies, loghead truncates values. This
proof event takes 1-2 seconds and runs fully automatically.

VeSCMul Demo

• Tested with 1000s of different design configurations.
• Also got successful results in industrial designs, including

verification flow of FP fused multiply-add. Tool helped
notably cut down on verification time for new designs.

• Future work includes more testing and further
improvements as needed.

Results

2024

1. User conjecture
with high-level
specification

3. Tool identifies
half/full-adders in the

design

2. Tool receives a sea
of gates from the

design

4. Both the design and the
spec are rewritten to a fixed

form with S-C-Rewriting
methodology

A fixed form
(i.e., s-c-form)5. If the rewriter could not

finalize the proof,
rewritten/simplified

conjecture can be passed to
FGL for SAT solving

FGL

(Maybe)

• Ability to state custom conjectures, supporting multiplier
variants such as multiply-add, shifted/truncated outputs
(vital for industrial designs)

• Fully automatic, only a fraction of target designs requiring
manual intervention

• Integration into other verification flows, helpful during more
complex tasks such as verification of floating-point designs

• The program itself is fully verified, delivering soundness
guarantees of its results

Noteworthy Features

Provable Preimage Under-Approximation
for Neural Networks

Xiyue Zhang, Benjie Wang and Marta Kwiatkowska
Department of Computer Science, University of Oxford

v

v

Result 1: Comparison with SOTA methods

Result 2: Comparison with robustness verifiers

Efficient input bounding plane generation

Methods

Background

Characterizing the preimage symbolically allows us

to perform more complex analysis for a wider

class of properties beyond local robustness, such

as computing the proportion of inputs satisfying a

property (quantitative verification) even if standard

robustness verification fails.

Refinement algorithm with novel input-split and

ReLU-split methods

1

2

An anytime, scalable and flexible method for preimage approximation
of neural networks, with application to quantitative verification.

Scan me for
full text

Preimage approximation with provable guarantees:

3 Optimization of convex bounding functions

for tighter preimage approximation

Symbolic lower/upper bounding functions from

output to input:	 𝑏 − 𝐴𝑥 ≤ 𝑓 𝑥 ≤ 𝑏 	− 𝐴𝑥

• under-approximation in the form of polytope:

x 𝑏 − 𝐴𝑥 ≥ 0} ⟶ x 𝑓(𝑥) ≥ 0}

Refinement via splitting plane

• split the domain into subdomains to derive

tighter preimage polytope over the subdomain

• the preimage is the union of the polytopes

⋃!∈[$,&] 	{𝑥: 𝑏! − 𝐴!𝑥 ≥ 0}

1

2

• Orders-of-magnitude improvement in efficiency

• Preimage in the form of disjoint polytope union

• Splitting method designed for preimage abstraction

• Scalability to high-dimensional inputs

• Provide quantitative results when the safety property

does not hold.

Optimize polytope volume via gradient descent

• The optimization problem over 𝜶 for K specifications
3

Refinement via naïve splitting is infeasible

Q1. How to prioritize which leaf subregion to split?

Region search strategy:

Q2. How to identify the best splitting plane?

Greedy method:

𝑣𝑜𝑙 𝒞! − 𝑣𝑜𝑙 𝒞! > 𝑣𝑜𝑙 𝒞" − 𝑣𝑜𝑙(𝒞")

𝑣𝑜𝑙 𝑇(𝒞!) + 𝑣𝑜𝑙 𝑇(𝒞") > 𝑣𝑜𝑙 𝑇(𝒞!#) + 𝑣𝑜𝑙 𝑇(𝒞"′)

Before/After

Optim

Input/ReLU

Split

Dissipative quadratizations of polynomial ODE systems
Yubo Cai 1 Gleb Pogudin 2

1École Polytechnique 2LIX, CNRS, École Polytechnique

Quadratization: What?

Consider a system in x̄ = (x1, . . . , xn):

x′
1 = f1(x̄),

. . .

x′
n = fn(x̄),

where f1, . . . , fn ∈ C[x̄].

New variables y1 = g1(x̄), . . . , ym = gm(x̄) are called quadratization if

there exist h1, . . . , hm+n ∈ C[x̄, ȳ], deg h1, . . . , deg hm+n 6 2 such that

x′
1 = h1(x, y),

· · ·
x′

n = hn(x, y)
and

y′
1 = hn+1(x̄, ȳ)

· · ·
y′

m = hn+m(x̄, ȳ)

Toy example

x′ = x4

(degree = 4)
introduce y:=x3
−−−−−−−−→

{
x′ = xy

y′ = 3x′x2 = 3x6

(degree 6 2)

Quadratization: Why?

Synthesis of chemical reaction networks:

deg 6 2 ⇐⇒ bimolecular network

Reachability analysis: explicit error bounds for Carleman

linearization in the quadratic case.

Moder Order Reduction (MOR)

Research objectives

How to design a quadratization algorithm that preserves the nu-

merical properties of the original system and ensures the computa-

tional efficiency of the algorithm.

Figure 1. Plot of the following systems with initial condition X0 = [x0, y0 = x2
0] = [0.1, 0.01].

The third system is unstable and diverges in numerical integral!

Original: x′ = −x + x3 ⇔

Stable:

{
x′ = −x + xy

y′ = −2y + 2y2 ⇔

Unstable:

{
x′ = −x + xy

y′ = −2y + 2y2 + 12 (y − x2) = 10y − 12x2 + 2y2

Our Methodology

We define a system of differential equations

x′ = p(x), (1)

where x = x(t) = (x1(t), . . . , xn(t)) is a vector of unknown functions
and p = (p1, . . . , pn) is a vector of n-variate polynomials p1, . . . , pn ∈
R[x].
Definition 1 (Equilibrium). For a polynomial ODE system (1), a point

x∗ ∈ Rn is called an equilibrium if p(x∗) = 0.
Definition 2 (Dissipativity). An ODE system (1) is called dissipative at

an equilibrium point x∗ if all the eigenvalues of the Jacobian J(p)|x=x∗

of p and x∗ have negative real part. It is known that a system which is
dissipative at an equilibrium point x∗ is asymptotically stable at x∗.

Examples of our methods

Consider the following differential equation:

x′ = −x(x − 1)(x − 2)
- System’s equilibria: 0, 1, 2
- Dissipative equilibria x = 0 and x = 2
Inner-quadratic quadratization: introduce y = x2

{
x′ = −xy + 3x2 − 2x,

y′ = −2y2 + 6xy − 4x2 − λ(y − x2)
Dissipative quadratization: append stabilizer h(x, y) = y − x2 into

the inner-quadratic system with scalar parameter λ

Σλ =
{

x′ = −xy + 3x2 − 2x,

y′ = −2y2 + 6xy − 4x2 − λ(y − x2)
Jacobian matrix of the above system:

J =
[

−y + 6x − 2 −x

6y + 2λx − 8x −4y − λ + 6x

]

For λ = 1, 2, 4, 8, . . . we check the eigenvalues of its Jacobian at

points (0, 0) and (2, 4):

λ at (0, 0) at (2, 4)
1 −2, −1 −2, 3
2 −2, −2 −2, 2
4 −2, −4 −2, 0
8 −2, −8 −2, −4

Table 1. Eigenvalues of the Jacobian of Σλ

Applications

Reachability analysis with Carleman linearization.

Preserving bistability.

Coupled Duffing oscillators.

More information

Paper: https://arxiv.org/abs/2311.02508

Code: https://github.com/yubocai-poly/DQbee

Figure 2. Paper Figure 3. Code

École Polytechnique TACAS 2024 yubo.cai@polytechnique.edu

Z3-Noodler: An Automata-based String Solver
Yu-Fang Chen 1, David Chocholatý 2, Vojtěch Havlena 2,

Lukáš Hoĺık 2, Onďrej Lengál 2, and Juraj Śı̌c 2

1Academia Sinica, Taipei, Taiwan 2Brno University of Technology, Brno, Czech Republic

Z3-Noodler: An Automata-based String Solver
Yu-Fang Chen 1, David Chocholatý 2, Vojtěch Havlena 2,

Lukáš Hoĺık 2, Onďrej Lengál 2, and Juraj Śı̌c 2

1Academia Sinica, Taipei, Taiwan 2Brno University of Technology, Brno, Czech Republic

Highlight
• string solver for quantifier-free theory of strings (QF S, QF SLIA)

• based on SMT solver Z3 and heavily using nondeterministic finite automata

• stabilization-based procedure for (dis)equalities with lengths and regular constraints

• support of predicates/functions defined by SMT-LIB

• tailored for regex-intensive and equation-intensive formulae

Motivation

let x = y.substring(1,

y.length - 1);

let z = y.concat(x);

assert(x === z);

x0 = substr(y , 1, |y | − 1)
∧ z0 = y .x0
∧ x0 ̸= z0

–action: deactivate ,

resource: (a1, a2),

condition:

–StringLike ,

s3:prefix , home*˝

˝

A = ”deactivate”

∧ (R = ”a1” ∨ R = ”a2”)
∧ prefix ∈ home∗

Architecture

• replacement of Z3’s string theory

•SMT-LIB format of input formulae

•modified string theory rewriter (rules beneficial for the stabilization)

1 string theory assignment (conjunction of

(dis)equalities, regular constraints, predicates)

2 theory lemma (including LIA constraints)

3 Mata library for efficient handling of NFAs

4 internal LIA solver for checking lengths con-

straints

Noodler
string theory

LIA solver
instance

Mata LIA solver

core string
rewriter

SMT string formula

1 2

43

Z3

String Theory Core

Axiom saturation

• length-aware string axioms: |t1.t2| = |t1|+ |t2|
• axioms for string predicates/functions: ¬contains(s, ”abc”) to s /∈ Σ∗abcΣ∗
• different saturation for predicates with concrete values

Preprocessing

• transforming the string constraint to a suitable form

• tailored for the particular decision procedure

• simple equations converted to regular constraints

• smart underapproximation

Decision procedures

• stabilization-based procedure

– iterative refinement of variables’ languages

– based on noodlification of NFAs representing variable languages

– efficient NFA operations in Mata; eager simulation-based reduction

– generation LIA constraints describing lengths of stable solutions

– lazy generation of stable solutions

– complete for chain-free fragment

(p, 1)

(p, 2)

(p, 3)

(q, 1)

(q, 2)

(q, 3)

(r, 1)

(r, 2)

(r, 3)

︸ ︷︷ ︸
x

︸ ︷︷ ︸
y

︸ ︷︷ ︸
x

a b

a

a b

a

a b

a

ϵ-
p
ro
d
u
ct

p q r

a, b a, b a, b

Axyx

1

2

3

a b

a

Azu

(p, 1)

(p, 2)

(p, 3)

(q, 1)

(q, 2)

(q, 3)

(r, 1)

(r, 2)

(r, 3)

︸ ︷︷ ︸
x

︸ ︷︷ ︸
y

︸ ︷︷ ︸
x

a b a b a b

a

N1

(p, 1)

(p, 2)

(p, 3)

(q, 1)

(q, 2)

(q, 3)

(r, 1)

(r, 2)

(r, 3)

︸ ︷︷ ︸
x

︸ ︷︷ ︸
y

︸ ︷︷ ︸
x

a b a b

a

N2

•Nielsen transformation

–Nielsen graph construction ⇝ counter automaton generation
– transition saturation of the counter automaton

– iterative generation of LIA formulae describing paths

– complete for quadratic constraints (no lengths and regular constraints)

Experimental Evaluation
• benchmarks from SMT-LIB (QF S, QF SLIA)

• comparison with SOTA solvers

•Z3-Noodler v1.1 (TACAS’24 paper was v1.0)

• timeout 120 s, memory limit 8 GiB

•Regex, •Equations, and •Predicates-small

•Z3-Noodler outperforms other tools on Regex
and Equations

• often complementary to other solvers

• great in a solver portfolio

• extensions

– supports string conversions (v1.1)

– support for replace all is in making

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

cv
c5

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

Z
3

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

V
ir

tu
a
l
B

e
st

 S
o
lv

e
r

Detailed Results

Regex Equations Predicates-small

Aut Den StrFuzz Syg Σ Kal Kep Norn Slent Slog Web Woo Σ StrInt Leet StrSm Σ PyEx

Included 15995 999 11618 343 28955 19432 587 1027 1128 1976 365 809 25324 16968 2652 1880 21500 23845

Unsupported 0 0 0 0 0 0 0 0 0 0 316 0 316 0 0 0 0 0

Z3-Noodler 60 0 2 0 62 270 3 0 1 0 8 59 341 264 4 137 405 94

cvc5 93 18 703 0 814 1 240 84 24 0 47 54 450 5 0 19 24 19

Z3 125 116 537 0 778 284 309 124 73 31 104 27 952 239 0 59 298 987

Z3str4 60 4 30 0 94 174 254 73 73 16 121 78 789 1102 4 60 1166 570

OSTRICH 48 6 218 0 272 288 387 0 126 6 74 53 934 1059 27 173 1259 12833

Z3str3RE 66 27 185 1 279 144 311 133 87 55 192 118 1040 3231 192 259 3682 17764

Z3-Noodlerpr 86 1 1982 0 2069 508 575 0 6 0 45 256 1390 1627 29 692 2348 13362

Tool
Available at GitHub

Amazon cloud access

control policies

Symbolic execution of

string programs

Noodlification of xyx = zu∧u ∈ (baba)∗a∧z ∈ a(ba)∗

Unsolved cases (smaller is better)

https:
//gith

ub.com
/VeriF

IT/z3-
noodle

r

SV-COMP and Test-Comp Posters

13th Competition
on Software Verification

Dirk Beyer

Participants
Table 1: Competition candidates with tool references
and representing jury members; new for first-time
participants, ∅ for hors-concours participation

Participant Jury member Affiliation
2ls V. Malík BUT, Czechia
aise new Z. Chen NUDT, China
BRICK L. Bu Nanjing U., China
Bubaak M. Chalupa ISTA, Austria
Bubaak-SpLit new M. Chalupa ISTA, Austria
CBMC∅ (h. c.) –
COASTAL∅ (h. c.) –
CoVeriTeam-AlgSel∅ (h. c.) –
CoVeriTeam-ParPort∅(h. c.) –
CPAchecker D. Baier LMU Munich, Germany
CPALockator∅ (h. c.) –
CPA-BAM-BnB∅ (h. c.) –
CPA-BAM-SMG∅ (h. c.) –
CPV new P.-C. Chien LMU Munich, Germany
Crux∅ (h. c.) –
CSeq∅ (h. c.) –
Dartagnan H. Ponce de León Huawei Dresden, Germany
Deagle F. He Tsinghua U., China
DIVINE∅ (h. c.) –
EBF F. Aljaafari U. of Manchester, UK
EmergenTheta new L. Bajczi BME Budapest, Hungary
ESBMC-incr∅ (h. c.) –
ESBMC-kind F. Brauße U. Manchester, UK
Frama-C-SV M. Spiessl LMU Munich, Germany
Gazer-Theta∅ (h. c.) –
GDart F. Howar TU Dortmund, Germany
GDart-LLVM∅ (h. c.) –
Goblint S. Saan U. Tartu, Estonia
Graves-CPA∅ (h. c.) –
Graves-Par∅ (h. c.) –
Infer∅ (h. c.) –
Java-Ranger∅ (h. c.) –
JayHorn H. Mousavi U. Tehran, TIAS, Iran
JBMC P. Schrammel U. Sussex / Diffblue, UK
JDart∅ (h. c.) –
Korn G. Ernst LMU Munich, Germany
Lazy-CSeq∅ (h. c.) –
LF-checker∅ (h. c.) –
Locksmith∅ (h. c.) –
MLB L. Bu Nanjing U., China
Mopsa R. Monat Inria and U. Lille, France
PeSCo-CPA∅ (h. c.) –
PIChecker∅ (h. c.) –
Pinaka∅ (h. c.) –
PredatorHP V. Šoková BUT, Czechia
Proton new R. Metta TCS, India
SPF∅ (h. c.) –
sv-sanitizers new S. Saan U. of Tartu, Estonia
SWAT new N. Loose U. of Luebeck, Germany
Symbiotic M. Jonáš Masaryk U., Czechia
Theta L. Bajczi BME Budapest, Hungary
UAutomizer M. Heizmann U. Freiburg, Germany
UGemCutter D. Klumpp U. Freiburg, Germany
UKojak F. Schüssele U. Freiburg, Germany
UTaipan D. Dietsch U. Freiburg, Germany
VeriAbs P. Darke TCS, India
VeriAbsL P. Darke TCS, India
VeriOover∅ (h. c.) –

Features
Table 2: Algorithms and techniques that the partic-
ipating verification systems used; new for first-time
participants, ∅ for hors-concours participation

Verifier CE
GA

R

Pr
ed

ica
te

Ab
st

ra
ct

io
n

Sy
m

bo
lic

Ex
ec

ut
io

n

Bo
un

de
d

M
od

el
Ch

ec
ki

ng

k-
In

du
ct

io
n

Pr
op

er
ty

-D
ire

ct
ed

Re
ac

h.

Ex
pl

ici
t-V

al
ue

An
al

ys
is

Nu
m

er
ic.

In
te

rv
al

An
al

ys
is

Sh
ap

e
An

al
ys

is

Se
pa

ra
tio

n
Lo

gi
c

Bi
t-P

re
cis

e
An

al
ys

is

AR
G-

Ba
se

d
An

al
ys

is

La
zy

Ab
st

ra
ct

io
n

In
te

rp
ol

at
io

n

Au
to

m
at

a-
Ba

se
d

An
al

ys
is

Co
nc

ur
re

nc
y

Su
pp

or
t

Ra
nk

in
g

Fu
nc

tio
ns

Ev
ol

ut
io

na
ry

Al
go

rit
hm

s

Al
go

rit
hm

Se
lec

tio
n

Po
rtf

ol
io

2ls ✓ ✓ ✓ ✓ ✓ ✓

aise new ✓

BRICK ✓ ✓ ✓ ✓ ✓

Bubaak ✓ ✓ ✓ ✓ ✓

Bubaak-SpLit new ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CBMC∅ ✓ ✓ ✓

COASTAL∅ ✓

CVT-AlgoSel∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVT-ParPort∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPAchecker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPALockator∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPA-BAM-BnB∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPA-BAM-SMG∅

CPV new ✓ ✓ ✓ ✓

Crux∅ ✓

CSeq∅ ✓ ✓ ✓

Dartagnan ✓ ✓ ✓

Deagle ✓ ✓

DIVINE∅ ✓ ✓ ✓ ✓ ✓ ✓

EBF ✓

EmergenTheta new ✓ ✓ ✓ ✓ ✓ ✓ ✓

ESBMC-incr∅ ✓ ✓ ✓ ✓

ESBMC-kind ✓ ✓ ✓ ✓ ✓ ✓

Frama-C-SV ✓

Gazer-Theta∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GDart ✓ ✓ ✓

GDart-LLVM∅ ✓ ✓

Goblint ✓ ✓ ✓

Graves-CPA∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Graves-Par∅

Infer∅ ✓ ✓ ✓ ✓

Java-Ranger∅ ✓ ✓

JayHorn ✓ ✓ ✓ ✓ ✓ ✓

JBMC ✓ ✓ ✓

JDart∅ ✓ ✓ ✓

Korn ✓ ✓ ✓ ✓

Lazy-CSeq∅ ✓ ✓ ✓

LF-checker∅

Locksmith∅ ✓

MLB ✓ ✓ ✓

Mopsa ✓

PeSCo-CPA∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PIChecker∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pinaka∅ ✓ ✓ ✓

PredatorHP ✓

Proton new ✓

SPF∅ ✓ ✓ ✓

sv-sanitizers new ✓

SWAT new ✓

Symbiotic ✓ ✓ ✓ ✓ ✓ ✓ ✓

Theta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UAutomizer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UGemCutter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UKojak ✓ ✓ ✓ ✓ ✓

UTaipan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriAbs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriAbsL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriOover∅

Frameworks
Table 3: Solver libraries and frameworks that are
used as components in the participating verification
systems; new for first-time participants, ∅ for hors-
concours participation

Verifier C
PA

ch
ec

ke
r

C
P

ro
ve

r

E
sb

m
c

Jp
f

U
lt

im
at

e

Ja
va

SM
T

M
at

hS
A

T

C
vc

4

SM
T

in
te

rp
ol

z3 M
in

iS
A

T

A
pr

on

2ls ✓ ✓

aise new

BRICK ✓ ✓

Bubaak ✓

Bubaak-SpLit new

CBMC∅ ✓ ✓

COASTAL∅ ✓

CVT-AlgoSel∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVT-ParPort∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPAchecker ✓ ✓ ✓ ✓

CPALockator∅ ✓ ✓ ✓

CPA-BAM-BnB∅ ✓ ✓ ✓

CPA-BAM-SMG∅ ✓ ✓ ✓

Crux∅ ✓

CSeq∅ ✓ ✓

Dartagnan ✓

Deagle ✓

DIVINE∅

EBF ✓ ✓

EmergenTheta new

ESBMC-incr∅ ✓ ✓

ESBMC-kind ✓ ✓

Frama-C-SV
Gazer-Theta∅

GDart ✓ ✓

GDart-LLVM∅ ✓

Goblint ✓

Graves-CPA∅ ✓ ✓ ✓

Graves-Par∅

Infer∅

Java-Ranger∅ ✓

JayHorn
JBMC ✓ ✓

JDart∅ ✓ ✓ ✓

Korn ✓

Lazy-CSeq∅ ✓ ✓

LF-checker∅

Locksmith∅

MLB
Mopsa ✓

PeSCo-CPA∅ ✓ ✓ ✓

PIChecker∅ ✓ ✓ ✓ ✓

Pinaka∅

PredatorHP
Proton new

SPF∅ ✓

sv-sanitizers new

SWAT new

Symbiotic ✓

Theta
UAutomizer ✓ ✓ ✓ ✓ ✓

UGemCutter ✓ ✓ ✓ ✓ ✓

UKojak ✓ ✓ ✓

UTaipan ✓ ✓ ✓ ✓ ✓

VeriAbs ✓ ✓ ✓ ✓

VeriAbsL ✓ ✓ ✓ ✓

VeriOover∅More Information

https://sv-comp.sosy-lab.org/2024/

Reference
D. Beyer. State of the art in software verification and
witness validation: SV-COMP 2024. In Proc. TACAS,
LNCS . Springer, 2024

Results
Table 4: Quantitative overview over all regular re-
sults; empty cells are used for opt-outs, new for first-
time participants, ∅ for hors-concours participation

Participant

R
ea

ch
Sa

fe
ty

17
74

6
po

in
ts

11
30

5
ta

sk
s

M
em

Sa
fe

ty
32

16
po

in
ts

21
35

ta
sk

s

C
on

cu
rr

en
cy

Sa
fe

ty
56

72
po

in
ts

32
59

ta
sk

s

N
oO

ve
rfl

ow
s

13
04

4
po

in
ts

81
88

ta
sk

s

Te
rm

in
at

io
n

40
00

po
in

ts
23

54
ta

sk
s

So
ft

w
ar

eS
ys

te
m

s
52

51
po

in
ts

38
13

ta
sk

s

Fa
ls

ifi
ca

ti
on

O
ve

ra
ll

88
17

po
in

ts
28

70
0

ta
sk

s

O
ve

ra
ll

49
09

7
po

in
ts

31
05

4
ta

sk
s

Ja
va

O
ve

ra
ll

82
8

po
in

ts
58

7
ta

sk
s

2ls 6000 224 0 5976 1584 10 1311 10564
aise new

BRICK
Bubaak 3788 1890 11 6465 1481 -1082 -617 12206
Bubaak-SpLit new 4692 1312 7 -41374 661 872 1959 -18177
CPAchecker 10084 1897 2029 8603 1195 784 4812 21568
CPV new 6330
Dartagnan 3547
Deagle
EBF 636
EmergenTheta new 1178
ESBMC-kind 8364 2077 1853 8272 1048 -1063 2394 17896
Frama-C-SV 1098
GDart 616
Goblint 2289 1304 2583 7059 890 536 15458
JayHorn 325
JBMC 618
Korn
MLB 676
Mopsa 2241 1516 8063 2197
PredatorHP 2321
Proton new 3526
sv-sanitizers new 290
SWAT new 566
Symbiotic 7052 2156 238 7370 1258 687 4050 17192
Theta 2119 2354
UAutomizer 6320 2110 3079 9497 3248 261 3139 26396
UGemCutter 3189
UKojak 4869 1400 0 7363 0 233 2291 10593
UTaipan 5751 2014 2655 9231 0 351 3157 18042
VeriAbs 10541
VeriAbsL 10735
CBMC∅ 1269 1330 1229 5771 1125 -2569 -3764 8391
COASTAL∅ -2752
CVT-AlgoSel∅ 2635 41
CVT-ParPort∅ -6152 1655 911 -17812 1289 -1297 -9118 -7545
CPA-BAM-BnB∅ -2439
CPA-BAM-SMG∅ 2039 -2804
CPALockator∅ -4924
Crux∅ 2066 490
CSeq∅ -12478
DIVINE∅ 4655 298 390 0 0 76 256 3576
ESBMC-incr∅ 542
Gazer-Theta∅

GDart-LLVM∅

Graves-CPA∅ 3831 -322 -1538 5470
Graves-Par∅ 876 1627 53 -17650 1256 -2037 -9024 -6731
Infer∅ -99128 -8289 -73312 -24917
Java-Ranger∅ 398
JDart∅ 382
Lazy-CSeq∅ -15024
LF-checker∅ 772
Locksmith∅

PeSCo-CPA∅ 5814 -76 3247 17315
PIChecker∅ 521
Pinaka∅ 2418 1337 855
SPF∅ 182
VeriOover∅

Ranking
Table 5: Overview of the top-three verifiers for each
category; new for first-time participants, measure-
ments for CPU time and energy rounded to two
significant digits.

Rank Verifier Score CPU CPU Solved Unconf. False Wrong
Time Energy Tasks Tasks Alarms Proofs
(in h) (in kWh)

ReachSafety
1 VeriAbsL 10735 190 7075 1138 2
2 VeriAbs 10541 190 6720 1032 1
3 CPAchecker 10084 200 6468 286 2
MemSafety
1 PredatorHP 2321 1.2 1823 3 3
2 Symbiotic 2156 0.77 1855 0 5
3 UAutomizer 2110 62 1637 4
ConcurrencySafety
1 Dartagnan 3547 14 2086 0 5
2 UGemCutter 3189 32 1851 4 1
3 UAutomizer 3079 28 1791 3 1
NoOverflows
1 UAutomizer 9497 62 4532 2
2 UTaipan 9231 66 4420 11 1
3 CPAchecker 8603 18 5596 192
Termination
1 Proton new 3526 19 1888 126 1
2 UAutomizer 3248 18 1631 11
3 2ls 1584 4.2 1167 201
SoftwareSystems
1 Mopsa 2197 15 2030 0
2 Bubaak-SpLit new 872 0.42 480 163 8
3 CPAchecker 784 43 1756 71
FalsificationOverall
1 CPAchecker 4812 91 4920 218 10
2 Symbiotic 4050 27 4281 191 11
3 UTaipan 3157 33 1602 34 1
Overall
1 UAutomizer 26396 290 13 617 114 3 7
2 CPAchecker 21568 320 17 968 698 16 1
3 UTaipan 18042 240 11 524 71 1 13
JavaOverall
1 MLB 676 0.93 484 34
2 JBMC 618 0.44 424 80
3 GDart 616 2.6 453 9

Score Schema
Table 6: Scoring schema for SV-COMP 2024 (un-
changed from 2021)

Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found

and a validator confirmed the result based on a witness
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
True incorrect −32 Incorrect program reported as correct (wrong proof)

Cummulative Score

 1

 10

 100

 1000

M
in

.
ti

m
e
 i
n
 s

2LS
Bubaak

Bubaak-SpLit
CBMC

CVT-ParPort
CPAchecker

DIVINE
ESBMC-kind

Goblint
Graves-CPA
Graves-Par
PeSCo-CPA
Symbiotic

UAutomizer
UKojak

UTaipan

-10000 -5000 0 5000 10000 15000 20000 25000

Cumulative score

Figure 1: Quantile functions for category
C-Overall.

BenchExec
Reliable Benchmarking:

Requirements and Solutions
Dirk Beyer, Stefan Löwe, and Philipp Wendler

Overview

runexec

· · ·
runexec

benchexec
Bench.

Def.

Input
Files

XML
Results

table-generator

HTML
Table

TSV
Data

BenchExec

BenchExec: A Framework for Reliable Benchmarking and Resource Measurement

Benchmarking Requirements
1. Measure and Limit Resources Accurately
2. Terminate Processes Reliably
3. Assign Cores Deliberately
4. Respect Nonuniform Memory Access
5. Avoid Swapping
6. Isolate Individual Runs

Scope
• Linux systems
• CPU-bound tool (negligible I/O)
• No use of other resources such as GPUs
• No networking / distributed execution
• No user interaction
• No malicious intent

⇒ Great for solvers, verifiers, etc.!

Use Cases
• Low-level command for isolated, limited, and

measured execution of a tool
• Integration in other benchmarking frame-

works via command line and Python API
(used by StarExec)

• Benchmarking with large number of runs
• Competition execution

(used e.g. by SV-COMP since 2016)
• Regression testing

Execution

Iso
lat

io
n

Resource Limitation /
Measurement

2 Process

Run

runexec

Iso
lat

io
n

Resource Limitation /
Measurement

2 Process

Run

runexec

CPU Cores 3 3 3 3 Memory

Techniques and Features
Benchmarking containers implemented with Linux features such as
• Control groups (cgroups) for resource limitation and measurements

(compatible with cgroups v1 and v2)
• Namespaces for isolation
• Overlay filesystem (overlayfs)

for intercepting file writes
(same techniques as used by Docker, etc.)

• Parallel execution of tools
• Automatic calculation of distribution of cores and memory regions
• Knows about NUMA and hyper threading
• Configurable file-system layout in container

(hide directories, allow write access, etc.)

table-generator

Interactive
online example

• Combine results from several executions
• Define table layout
• Select and filter results
• Compute statistics
• Export raw data as TSV
• Generate interactive tables

as stand-alone HTML files
• Quantile and scatter plots
• Live analysis of data

Thanks to all Contributors!
Aditya Arora, Laura Bschor, Thomas Bunk, Mont-
gomery Carter, Saransh Chopra, Andreas Donig,
Karlheinz Friedberger, Peter Häring, Florian Heck,
Hugo van Kemenade, George Karpenkov, Mike
Kazantsev, Michael Lachner, Thomas Lemberger,
Sebastian Ott, Stephan Lukasczyk, Alexander von
Rhein, Alexander Schremmer, Dennis Simon, An-
dreas Stahlbauer, Thomas Stieglmaier, Martin
Yankov, Ilja Zakharov, and more (100 in total)!

Paper
• STTT 2017
• Open Access
• DOI 10.1007/

s10009-017-0469-y
• Important aspects

for benchmarking,
hardware influence,
how to present
results, . . .

Tool BenchExec

• License Apache 2.0
• No root access

required for
benchmarking

• Available on PyPI
and github.com/

sosy-lab/benchexec

CPAchecker
A Tool for Configurable Program Analysis

Daniel Baier, Dirk Beyer, Po-Chun Chien, Marek Jankola, Matthias Kettl, Nian-Ze Lee,
Thomas Lemberger, Marian Lingsch-Rosenfeld, Martin Spiessl, Henrik Wachowitz, and Philipp Wendler

Overview

P

Program
CFA CPA++ Alg. [3]

CEGAR [7] IMC [4]k-Induction [2] BAM [8] . . .

Composite CPA

Abstract
Model Verdict

Witness

Predicate CPA [3]

Interval CPA [1]

Specification CPA

Loop-Bound CPA

Value-Analysis CPA [6]

Assumption-Storage CPA

Function-Pointer CPA

Constraints CPA [5]

Callstack CPA

SMG CPA

Location CPA

. . .
φ

Specification

CPAchecker

CPAchecker is a modern and
versatile framework for building
software-verification analyses from
well-known concepts that match
the user’s requirements. cpachecker.

sosy-lab.org

Competition Contribution
“CPAchecker 2.3 with Strategy Selection” is our latest paper describing
new developments and configurations used in SV-COMP 2024.

• Utilize strategy selection to predict a sequential portfolio of analyses
• Support all properties and categories of C programs
• 1st place in category FalsificationOverall
• 2nd place in category Overall
• 3rd place in category ReachSafety
• 17 968 validated results in total (the most among all participants)
• Only 17 wrong results (0.06 % of all tasks)
• New and improved analyses for:

– Reachability
– Memory safety
– Termination
– Overflows
– Data races

Paper available here

Config for Reachability Single-Loop

Symbolic
Execution

Time Limit: 140 s

Value Analysis
with CEGAR

Time Limit: 60 s

Predicate Abstraction
with CEGAR

Time Limit: 200 s

Interval-Based
Data-Flow Analysis

Time Limit: 60 s

IMC
Time Limit: None

Er
ro

r-
Pa

th
C

he
ck

w
ith

Pr
ed

ic
at

e
A

bs
tr

ac
tio

n

unknown
false +
witness

true +
witness

false

false

false

false

spurious

spurious

unknown

unknown

unknown

unknown

unknown

true

true

true

true

true

feasible

Verification Strategy for SV-COMP 2024

Reachability

Termination

No Overflows

No Data Races

Memory Safety

Recursion

Concurrency

Loop-free

Single-Loop

Non-int. Data

Other

Predicate and Value analysis with BAM

BDD-based analysis

BMC and Predicate abstraction

Symbolic execution, Value, Pred, DF, IMC

Value analysis and k-Induction

Symbolic execution, Value, Pred, DF, k-Ind

Liveness-as-safety and lasso-based analysis

Reduction to reachability + Predicate abs.

Value analysis + memory-access-based POR

Symbolic execution + SMG-based analysis

Pr
op

er
ty

?

Pr
og

ra
m

st
ru

ct
ur

e?

Contributors

CPAchecker is an open-source
project, mainly developed by the
Software and Computational Sys-
tems Lab at LMU Munich, and
is used and extended by interna-
tional associates from U Passau,
U Oldenburg, U Paderborn, ISP
RAS, TU Prague, TU Vienna,
TU Darmstadt, and VERIMAG in
Grenoble, along with several other
universities and institutes.

We thank all contributors for
their work on CPAchecker.

References
[1] Beyer, D., Chien, P.C., Lee, N.Z.: CPA-DF: A tool for configurable interval anal-

ysis to boost program verification. In: Proc. ASE. pp. 2050–2053. IEEE (2023).
https://doi.org/10.1109/ASE56229.2023.00213

[2] Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-
refined invariants. In: Proc. CAV. pp. 622–640. LNCS 9206, Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4_42

[3] Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verification.
J. Autom. Reasoning 60(3), 299–335 (2018). https://doi.org/10.1007/s10817-017-9432-6

[4] Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. arXiv/CoRR 2208(05046) (July 2022).
https://doi.org/10.48550/arXiv.2208.05046

[5] Beyer, D., Lemberger, T.: Symbolic execution with CEGAR. In: Proc. ISoLA. pp. 195–211.
LNCS 9952, Springer (2016). https://doi.org/10.1007/978-3-319-47166-2_14

[6] Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: Proc. FASE. pp. 146–162. LNCS 7793, Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1_11

[7] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

[8] Friedberger, K.: CPA-BAM: Block-abstraction memoization with value analysis and pred-
icate analysis (competition contribution). In: Proc. TACAS. pp. 912–915. LNCS 9636,
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_58

CPV: A Circuit-Based Program Verifier
Po-Chun Chien and Nian-Ze Lee

{po-chun.chien, nian-ze.lee}@sosy.ifi.lmu.de

Motivation

HWMCC [5]
(Input: Btor2 circuit)

ABC [7], AVR [9], . . .

SV-COMP [1]
(Input: C program)

Applicable?

Software Architecture

C prog. Instrumentor Instrumented C prog.

Kratos2 [10]ReachSafety property Btor2 [13] Btor2Aiger [12]

Aiger [4]

AVR [9]

ABC [7]

By CoVeriTeam [3]

Btor2
witness [13]

Witness
translator

Software
witness [2]

Verdict

Try CPV!

Artifact DOI: 10.5281/zenodo.10063681

Strategy for SV-COMP 2024
CPV runs a sequential portfolio consisting of property-directed reachability (PDR) [8], interpolation-
based model checking (IMC) [11], k-induction (KI) [14], and bounded model checking (BMC) [6].

Circuit AVR
KI

AVR
PDR

ABC
IMC

ABC
PDR

if Btor2-to-Aiger translation succeeds

AVR
BMC

Evaluation Results at SV-COMP 2024
6th, 3rd, and 2nd place in ReachSafety, ReachSafety-ECA, ReachSafety-Hardware, respectively

1

10

100

1000

M
in

.
tim

e
 i
n

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-AlgoSel

CVT-ParPort

CPAchecker

CPV
Crux

DIVINE

EmergenTheta

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Pinaka

Symbiotic

Theta

UAutomizer

UKojak

UTaipan

VeriAbs

VeriAbsL

-4000 -2000 0 2000 4000 6000 8000 10000

Cumulative score in ReachSafety

1

10

100

1000
2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-AlgoSel

CVT-ParPort

CPAchecker

CPV

Crux

DIVINE

EmergenTheta

ESBMC-kind

Gazer-Theta

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Pinaka

Symbiotic

Theta

UAutomizer

UKojak

UTaipan

VeriAbs

VeriAbsL

-500 0 500 1000

Cumulative score in ReachSafety-ECA

ReachSafety-ECA

1

10

100

1000
2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-AlgoSel

CVT-ParPort

CPAchecker

CPV

Crux

DIVINE

EmergenTheta

ESBMC-kind

Gazer-Theta

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Pinaka

Symbiotic

Theta

UAutomizer

UKojak

UTaipan

VeriAbs

VeriAbsL

-500 0 500 1000

Cumulative score in ReachSafety-ECA

ReachSafety-ECA

1

10

100

1000
2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-AlgoSel

CVT-ParPort

CPAchecker

CPV

Crux

DIVINE

EmergenTheta

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Mopsa

PeSCo-CPA

Pinaka

Symbiotic

Theta

UAutomizer

UKojak

UTaipan

VeriAbs

VeriAbsL

-150 -100 -50 0 50 100 150 200 250

Cumulative score in ReachSafet-Hardware

ReachSafety-Hardware

1

10

100

1000
2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-AlgoSel

CVT-ParPort

CPAchecker

CPV

Crux

DIVINE

EmergenTheta

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Mopsa

PeSCo-CPA

Pinaka

Symbiotic

Theta

UAutomizer

UKojak

UTaipan

VeriAbs

VeriAbsL

-150 -100 -50 0 50 100 150 200 250

Cumulative score in ReachSafet-Hardware

ReachSafety-Hardware

Summary
• It is feasible to utilize sequential circuits

as intermediate representations for software
verification

• CPV can employ different hardware verifiers
as the backend

• CPV competed well against other mature
verifiers in SV-COMP

• Future work:
– Support more verification properties (e.g.,

no-overflow and termination)
– Export correctness witnesses
– Incorporate more backend verifiers
– Apply circuit optimization to improve the

performance of verification

References
[1] Beyer, D.: State of the art in software verification and

witness validation: SV-COMP 2024. In: Proc. TACAS
(2024)

[2] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lem-
berger, T., Tautschnig, M.: Verification witnesses. ACM
Trans. Softw. Eng. Methodol. 31(4), 57:1–57:69 (2022)

[3] Beyer, D., Kanav, S.: CoVeriTeam: On-demand com-
position of cooperative verification systems. In: Proc.
TACAS. pp. 561–579. LNCS 13243 (2022)

[4] Biere, A.: The AIGER And-Inverter Graph (AIG) for-
mat version 20071012. Tech. Rep. 07/1, Institute for For-
mal Models and Verification, Johannes Kepler University
(2007)

[5] Biere, A., Froleyks, N., Preiner, M.: 11th Hard-
ware Model Checking Competition (HWMCC 2020).
http://fmv.jku.at/hwmcc20/, accessed: 2023-01-29

[6] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu,
Y.: Bounded model checking. Advances in Computers
58, 117–148 (2003)

[7] Brayton, R., Mishchenko, A.: ABC: An academic
industrial-strength verification tool. In: Proc. CAV. pp.
24–40. LNCS 6174 (2010)

[8] Eén, N., Mishchenko, A., Brayton, R.K.: Efficient im-
plementation of property directed reachability. In: Proc.
FMCAD. pp. 125–134 (2011)

[9] Goel, A., Sakallah, K.: AVR: Abstractly verifying reach-
ability. In: Proc. TACAS. pp. 413–422. LNCS 12078
(2020)

[10] Griggio, A., Jonáš, M.: Kratos2: An SMT-based model
checker for imperative programs. In: Proc. CAV. pp.
423–436 (2023)

[11] McMillan, K.L.: Interpolation and SAT-based model
checking. In: Proc. CAV. pp. 1–13. LNCS 2725 (2003)

[12] Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Source-
code repository of Btor2, BtorMC, and Boolector
3.0. https://github.com/Boolector/btor2tools, accessed:
2023-01-29

[13] Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2,
BtorMC, and Boolector 3.0. In: Proc. CAV. pp. 587–
595. LNCS 10981 (2018)

[14] Sheeran, M., Singh, S., Stålmarck, G.: Checking safety
properties using induction and a SAT-solver. In: Proc.
FMCAD, pp. 127–144. LNCS 1954 (2000)

Ultimate
ultimate.informatik.uni-freiburg.de github.com/ultimate-pa/ultimate

Matthias Heizmann, Manuel Bentele, Daniel Dietsch, Xinyu Jiang, Dominik Klumpp, Frank Schüssele, Andreas Podelski

Features

• Memory safety analysis

• Overflow detection

• Termination analysis using
Büchi automata

• Nontermination analysis using
geometric nontermination arguments

• LTL software model checking

• Bitprecise analysis

• IEEE 754 floating point analysis

• Error witnesses

• Correctness witnesses

• Error localization

Techniques

• On-demand trace-based decomposition

• Interprocedural analysis via nested word
automata

• Theory-independent interpolation

• Refinement selection

• Configurable block encodings

• Multi SMT solver support

• Synthesis of ranking functions

• Efficient complementation of
semi-deterministic Büchi automata

• (Nested word) automata minimization

Ultimate program analysis framework

Core ASTBuilder

apache.commons
.lang

Lib
UltimateUtil

Lib
SmtLib

JavaCuplog4j

org.eclipse.core
.runtime

AutomataScript
Parser

BoogieParser

CDTParser

PEAtoBoogie

LTL2Aut

SpaceExParser

SmtParser

WitnessParser

BoogieModSet
Annotator

Boogie
Preprocessor

ProcedureInliner

Abstract
Interpretation

Automaton
DeltaDebugger

IRSDependencies

LassoRanker

Reaching
Definitions

SyntaxChecker

Cookify
BuchiProgram

Product

HeapSeparator

AutomataScript
Interpreter

BlockEncoding

BuchiAutomizer

CACSL2Boogie
Translator

CodeCheck

RcfgBuilder

TraceAbstraction

TraceAbstraction
WithAFAs

TraceAbstraction
Concurrent

DSITransformer

CDTPlugin

UltimateCLI

UltimateGUI

UltimateTest

WebInterface

BoogiePrinter

CfgPrinter

Jung
Visualization

WitnessPrinter

Lib
UltimateTest

JUNG
Lib
PEA

Lib
ModelCheckerUtils

Lib
LassoRanker

Lib
JUnitUtil

jdom

srParse ojAlgo

CZT

Batik

Lib
Automata

Xercex

ACSLParser

GuiGenerated
PreferencePages

GuiLogging
Window

org.eclipse.jface

org.eclipse.ui SMTInterpol SMTSolverBridge

Automata-theoretic proof of program correctness
Program P is correct because each error trace is infeasible, i.e. the inclusion P ⊆ A1 ∪ A2 holds.

`0: assume p != 0;

`1: while(n >= 0) {

`2: assert p != 0;

if(n == 0) {

`3: p := 0;

}

`4: n--;

}

`0

`1

`2

`3

`4

`5

`err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Program / automaton P whose language is the set of error traces.

⊆

q0true

q1p 6= 0

q2false

Σ

Σ

p != 0

p == 0

Σ\{ p := 0 }

Automaton A1
whose language is a

set of infeasible traces.

∪

p0true

p1n = 0

p2n = −1

p3false

n == 0

n--

n >= 0

Σ

Σ\{ n-- }

Σ\{ n-- }

Σ

Automaton A2
whose language is a

set of infeasible traces.

• Alphabet: set of program statements

Σ = { p != 0 , n < 0 , n >= 0 , p == 0 , n == 0 , n != 0 , p := 0 , n -- }
• The language of P is the set of error traces.

• In the first iteration, we analyze feasibility of the error
trace π1 = p != 0 n >= 0 p == 0 . π1 is infeasible. Via
interpolation, we obtain the following Hoare triples.

{ true } p != 0 { p 6= 0 }
{ p 6= 0 } n >= 0 { p 6= 0 }
{ p 6= 0 } p == 0 { false }

We construct the automaton A1 such that its language is the set of all traces whose
infeasibility can be shown using the predicates true , p 6= 0 , and false .

• Analogously, in the second iteration the automaton A2 is constructed.

• We check the inclusion P ⊆ A1∪A2 and conclude that each error trace is infeasible
and hence P is correct.

Definition Given an automaton A = (Q, δ, qinit, Qfinal)
over the alphabet of program statements, we call a map-
ping that assigns to each state q ∈ Q a predicate ϕq a
Floyd-Hoare annotation for automaton A if the fol-
lowing implications hold.

(q, st, q′) ∈ δ =⇒ {ϕq}st{ϕq′} is a valid Hoare triple
q = qinit =⇒ ϕq = true
q ∈ Qfinal =⇒ ϕq = false

Theorem If an automaton A has a Floyd-Hoare anno-
tation, then A recognizes a set of infeasible traces.

Interpolation with unsatisfiable cores

Level 1: “interpolation” via

• strongest post

Level 2: interpolation via

• strongest post
• live variable analysis

Level 3: interpolation via

• strongest post
• live variable analysis
• unsatisfiable cores

true

y = 0

y = 0 ∧ i = 0

y = 0 ∧ i = 0 ∧ x = y

y = 0 ∧ i = 1 ∧ x = y

false

y := 0

i := 0

x := y

i++

x >= 42

true ∅

y = 0 {y}

y = 0 ∧ i = 0 {y, i}

i = 0 ∧ x = 0 {i, x}

x = 0 {x}

false ∅

y := 0

i := 0

x := y

i++

x >= 42

true ∅

y = 0 {y}

y = 0 {y, i}

x = 0 {i, x}

x = 0 {x}

false ∅

y := 0

i := 0

x := y

i++

x >= 42

Algorithm (for level 3)

• Input: infeasible trace st1, . . . , stn and unsatisfi-
able core UC ⊆ {st1, . . . , stn}.

• Replace each statement that does not occur in UC
by a skip statement or a havoc statement.

assume statement ψ skip

assignment statement x:=t havoc x

• Compute sequence of predicates ϕ0, . . . , ϕn iter-
atively using the strongest post predicate trans-
former sp.

ϕ0 := true
ϕi+1 := sp(ϕi, sti+1)

• Eliminate each variable from predicate ϕi that is
not live at position i of the trace.

• Output: sequence of predicates ϕ0, . . . , ϕn which
is a sequence of interpolants for the infeasible
trace st1, . . . , stn.

Ultimate GemCutter: Commutativity in Concurrent Program Verification
Dominik Klumpp, Daniel Dietsch, Matthias Heizmann, Frank Schüssele, Azadeh Farzan, Andreas Podelski

ultimate-pa.org github.com/ultimate-pa/ultimate

Commutativity Simplifies Proofs of Concurrent Programs
Concurrent Program

{ x = y = i = j = 0 }
while (i < n) {

x += A[i];
i++;

}
∥

while (j < n) {
y += A[j];
j++;

}

{ x = y }

All Interleavings

i<
n

x+
=A

[i
]

i+
+ j<n

y+=A[j]
j++

j>=n

j>=n

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

i>=n

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

complex invariant: x =
i∑

k=0
A[k] ∧ y =

j∑

k=0
A[k] ∧ i ≤ n ∧ j ≤ n

A Sound Reduction

i<
n

i+
+

j++

j<n
y+=A[j]

j>=n

i<
n

x+
=A

[i
]

i+
+

i>=n

j<n
y+=A[j]

j+
+

j>=ni>=n

simple invariant: x = y ∧ i = j

small control flow graph

Commutativity
Many pairs of statements commute:

i.e., order of execution does not matter
Example: x+=A[i] y+=A[j] ∼ y+=A[j] x+=A[i]

Extension: proof-sensitive commutativity
Example: *x = 0 *y = 1 ∼ *y = 1 *x = 0

if we have proven that x ̸= y
swapping adjacent commuting statements
⇝ equivalent traces

Reduction
representative subset of program traces: at least one
representative per equivalence class

Soundness:
one trace correct ⇒ all equivalent traces correct

correctness of reduction ⇒ correctness of program

Verification Principle
GemCutter generalizes from spurious counterexamples τ
to larger sets of correct traces:
trace abstraction

generalizes across
loop iterations to a
set of traces L

commutativity allows
for generalization
across interleavings to
the set cl(L) of all
equivalent traces interleavings

ite
ra

tio
ns

cl(L)

L=(a1a2)∗b

equivalence class [τ]
τ =a1a2b a1ba2 ba1a2

(a1a2)2b

(a1a2)3b

If cl(L) contains all program traces, the program is correct.
Equivalently: If L contains all traces of a reduction, then
the program is correct.

Performance
Evaluation shows significant advantages over a
state-of-the-art verifier (Ultimate Automizer):

200 400 600 800 1,000 1,200

10

100

4

900
CPU time (s)

Automizer (all interleavings) GemCutter (commutativity-based)
200 400 600 800 1,000 1,200

200
250

500

1,000

2,000

4,000

8,000
Memory (MB)

Competitions:
▶ SV-COMP’24: 2nd place in ConcurrencySafety
▶ SV-COMP’23: 3rd place in ConcurrencySafety
▶ SV-COMP’22: 3rd place in ConcurrencySafety,

1st place in NoDataRace (demo)

Commutativity & Verification
choice of representatives affects proof simplicity
▶ challenge: select suitable representatives
choice of proof affects possible commutativity
▶ challenge: find useful abstract commutativity
partial order reduction algorithms speed up verification
▶ challenge: adapt classical POR algorithms
commutativity reasoning is widely applicable
▶ challenge: extend to more programs & properties

[SV-COMP’22] Ultimate GemCutter and the Axes of Generalization,
Klumpp, Dietsch, Heizmann, Schüssele, Ebbinghaus, Farzan and Podelski, 2022

[PLDI’22] Sound Sequentialization for Concurrent Program Verification,
Farzan, Klumpp and Podelski, 2022

[POPL’23] Stratified Commutativity in Verification Algorithms for Concurrent
Programs, Farzan, Klumpp and Podelski, 2023

[POPL’24] Commutativity Simplifies Proofs of Parameterized Programs,
Farzan, Klumpp and Podelski, 2024

Can commutativity-based ver-
ification compete in practice?Our algorithmic verification tool Ultimate

GemCutter
▶ tightly integrates commutativity-based

reduction with trace abstraction
refinement

▶ constructs a reduction on-demand as
needed for verification

▶ is built on top of the Ultimate program
analysis platform

GemCutter generalizes from spurious
counterexamples τ to larger sets of correct
traces:trace abstraction

generalizes across
iterations of a loop
to a set of traces L

commutativity
allows for orthogonal
generalization across
interleavings to the
union of equivalence
classes for all traces
in L, i.e., the closure
cl(L).

If cl(L) contains all
traces of the program,
the program is correct.

interleavings

ite
ra

tio
ns

cl(L)

L=(a1a2)∗b

equivalence class [τ]
τ =a1a2b a1ba2 ba1a2

(a1a2)2b

(a1a2)3b

Evaluation shows significant advantages
over a state-of-the-art verifier based on naïve
sequentialization (Ultimate Automizer):

200 400 600 800 1,000 1,200

10

100

4

900
CPU time (s)

Automizer (naïve sequentialization) GemCutter (commutativity-based)200 400 600 800 1,000 1,200

316

1,000

3,160

200

8,000
Memory (MB)

11th International Competition on
Software Verification (SV-COMP’22):
▶ 3rd place in category ConcurrencySafety
▶ 1st place in category NoDataRace

[SV-COMP’22] Dominik Klumpp et al. Ultimate
GemCutter and the axes of generalization
(competition contribution).
In TACAS (2), volume 13244 of Lecture Notes in
Computer Science, pages 479–483. Springer,
2022

How does the choice of repre-
sentatives impact verification?On the right: a different

reduction of the example
(different representatives
chosen for equivalence
classes)▶ even smaller control flow

graph
⇝ more efficient
proof checking

▶ but very complicated
invariant needed
⇝ algorithmic
verification cannot find
a proof

Conclusions:
▶ Choice of representatives

affects proof simplicity
and size of reduction

▶ tradeoff: smallest
reduction does not
always have simplest
proof

i<
n

x+
=A

[i
]

i+
+

i>=n

j<n
y+=A[j]

j+
+

j>=n

invariant: x =
n∑

k=0
A[k] ∧ y =

j∑

k=0
A[k] ∧ j ≤ n

Preference orders characterize possible
choices of representatives:
▶ (total) order over program traces
▶ representative = most preferred (i.e.,

minimal) trace in equivalence class
▶ allows comparing different representative

selections independent of commutativity
Positional lexicographic preference
orders:
▶ lexicographic order, but underlying order

on statements depends on program
location

▶ effective construction of reductions
using partial order reduction
algorithms:
sleep sets and weakly persistent
membranes

▶ best-case linear-size representation of
reductions

Evaluation of 5 prefer-
ence orders shows:
▶ Best preference order

depends on program
▶ Portfolio of preference

orders successfully
analyzes more
programs than any
fixed preference order

On the right: incorrect and
correct programs with the
best preference order

seq

lockstep

rand(1)

rand(2)

rand(3)

121

76

60

66

62

277

113

153

168

137

[PLDI’22] Azadeh Farzan, Dominik Klumpp, and
Andreas Podelski. Sound sequentialization for
concurrent program verification.
In PLDI, pages 506–521. ACM, 2022

How can commutativity be de-
fined?Intuition: statements st1 and st2 commute =̂

their execution order “does not matter”
Concrete Commutativity: st1 and st2
commute if st1st2 behaves exactly as st2st1:

Jst1st2K
︸ ︷︷ ︸

semantics: binary relation over program states

= Jst2st1K

▶ order “does not matter” for any program
and wrt. any (safety) property

▶ often unnecessarily strict: for a given
program and a given property,
more commutativity is possible

Idea: Let st1 and st2 commute if st1st2
behaves similarly enough to st2st1
⇝ abstract away irrelevant details, preserve
relevant details

relevance is determined by a (partial)
proof constructed by the verification
⇝ a notion of commutativity is safe wrt. a
proof Π if no trace proven by Π

is equivalent to an incorrect trace.
Abstract Commutativity: Given a
statement abstraction α : Stmt → Stmt,
statements st1 and st2 commute under α if
α(st1) and α(st2) commute concretely.
▶ If α preserves a proof Π, commutativity

under α is safe wrt. Π
preservation: {φ} st {ψ} used by Π ⇒ {φ}α(st) {ψ} valid

▶ Evaluation shows: even very coarse
abstraction highly beneficial for
light-weight properties (e.g. memory
safety)

Stratified Commutativity: fully benefit
from concrete and abstract commutativity
▶ neither commutativity

subsumes the other
▶ combination of

commutativity notions is
non-trivial

τ1 ∼α τ2 ∼ τ3
(1) abstract (2) concrete

proven correct⇒
▶ new proof rule, generalized

to n commutativity notions
▶ new partial order reduction

algorithms to compute
reductions up to n
commutativity notions

Π
clα(Π)

clconcr(clα(Π))

Stratified proof (for
concrete and

abstract
commutativity)

[POPL’23] Azadeh Farzan, Dominik Klumpp, and
Andreas Podelski. Stratified commutativity in
verification algorithms for concurrent programs.
In POPL, pages 1426–1453. ACM, 2023

Ultimate Kojak
ultimate.informatik.uni-freiburg.de github.com/ultimate-pa/ultimate

Daniel Dietsch, Marius Greitschus, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz, Christian Schilling, Tanja Schindler

Features
• Reachability analysis

• Memory safety analysis

• Bitprecise analysis

• IEEE 754 floating point analysis

• Error witnesses

• Correctness witnesses

Techniques
• Abstraction refinement

• Configurable block encodings

• Multi SMT solver support

• Newton-style interpolation

Refinement step

 Search for error trace

x = − 1 y = − 1

x: =0; y: =0

x++ y++

Split location by interpolant x=0

x = 0 x = 0

x = − 1 y = − 1

x: =0; y: =0

x: =0; y: =0

x++

y++

x++

y++

x++

y++

Delete infeasible edges

x = 0 x = 0

x = − 1 y = − 1

x: =0; y: =0

x: =0; y: =0

x++

y++

x++

y++

x++

y++

T

T

T

T

Ultimate program analysis framework

Core ASTBuilder

apache.commons
.lang

Lib
UltimateUtil

Lib
SmtLib

JavaCuplog4j

org.eclipse.core
.runtime

AutomataScript
Parser

BoogieParser

CDTParser

PEAtoBoogie

LTL2Aut

SpaceExParser

SmtParser

WitnessParser

BoogieModSet
Annotator

Boogie
Preprocessor

ProcedureInliner

Abstract
Interpretation

Automaton
DeltaDebugger

IRSDependencies

LassoRanker

Reaching
Definitions

SyntaxChecker

Cookify
BuchiProgram

Product

HeapSeparator

AutomataScript
Interpreter

BlockEncoding

BuchiAutomizer

CACSL2Boogie
Translator

CodeCheck

RcfgBuilder

TraceAbstraction

TraceAbstraction
WithAFAs

TraceAbstraction
Concurrent

DSITransformer

CDTPlugin

UltimateCLI

UltimateGUI

UltimateTest

WebInterface

BoogiePrinter

CfgPrinter

Jung
Visualization

WitnessPrinter

Lib
UltimateTest

JUNG
Lib
PEA

Lib
ModelCheckerUtils

Lib
LassoRanker

Lib
JUnitUtil

jdom

srParse ojAlgo

CZT

Batik

Lib
Automata

Xercex

ACSLParser

GuiGenerated
PreferencePages

GuiLogging
Window

org.eclipse.jface

org.eclipse.ui SMTInterpol SMTSolverBridge

C memory model

Models dynamically allocated memory through Boogie arrays:

• memory-[int|pointer|bitvector8|...]: store memory contents

– one array per used Boogie data type

– two dimensional, a memory address has components “base” and “offset”

– models disjointness of memory areas allocated by different malloc calls

• valid: store which base addresses are allocated

• length: store maximal offset at each base address

•“*p is a valid pointer dereference” ⇐⇒ valid[p.base] ∧ p.offset ≤ length[p.base]

•“Program has no memory leaks” ⇐⇒ valid = old(valid) at the end of main
base

offset

valid

length

T T F F T F

4 5 -1 -1 2 -1

SMT solver integration

Hoare triple checks
“Is {P} s {Q} a Hoare triple?”

Features:

• Simplify check if (variables(P) ∪ variables(st)) ∩ variables(Q) = ∅.
– often blocked because P, st and Q access the same array (but perhaps at different

positions)

– attempt to partition arrays via “alias analysis” (work in progress)

• Avoid checks with intricate predicates.

• Use incremental (push/pop) solver queries when possible, e.g., group checks that
share the same precondition P .

• Abstract interpretation-based:
Check if post#(P#, st) v Q# holds in some abstract domain.

• Unify equivalent predicates.

• Cache Hoare triples and implication between predicates.

Tree interpolation

• Interpolating solvers used by Ultimate: SMTInterpol, Z3

• Tree interpolation syntax example (procedures foo, bar):

(assert (! (..) :named foo-stm1))

(assert (! (..) :named foo-stm2))

(assert (! (..) :named bar-stm1))

(assert (! (..) :named bar-stm2))

(assert (! (..) :named foo-stm3))

(check-sat)

(get-interpolants (foo-stm1 foo-stm2 (bar-stm1 bar-stm2) foo-stm3))

Interface

• Java interface (currently only SMTInterpol)

• SMTLib2 interface

• Solvers in use at SV-COMP 2018: SMTInterpol, Z3, MathSat, CVC4
as many as we can get!

Newton-style interpolation

• Input: infeasible trace st1, . . . , stn, unsatis-
fiable core UC ⊆ {st1, . . . , stn}

• Replace statements not in UC:
assume statement ψ skip

assignment statement x:=t havoc x

• Compute sequence of predicates
ϕ0, . . . , ϕn iteratively using strongest
post operator post

ϕ0 := true
ϕi+1 := post(ϕi, sti+1)

• Eliminate each variable from predicate ϕi
that is not live at position i of the trace.

• Output: sequence of predicates ϕ0, . . . , ϕn
which is a sequence of interpolants for the
infeasible trace st1, . . . , stn

trace
τ

b:=ast1

x:=0st2

havoc pst3

!a[p]st4

a[p]:=truest5

x:=x+1st6

a[p]:=falsest7

a!=bst8

state assertions
for τ

trueϕ0

a = bϕ1

a = b ∧ x = 0ϕ2

a = b ∧ x = 0ϕ3

a = b ∧ x = 0 ∧ a[p] = falseϕ4

a = b[p := true] ∧ x = 0 ∧ a[p] = trueϕ5

a = b[p := true] ∧ x = 1 ∧ a[p] = trueϕ6

a = b ∧ x = 1 ∧ a[p] = falseϕ7

falseϕ8

interpolating
trace τ#

b:=a

havoc x

havoc p

!a[p]

a[p]:=true

havoc x

a[p]:=false

a!=b

state assertions
for τ#

trueϕ0

a = bϕ1

a = bϕ2

a = bϕ3

a = b ∧ a[p] = falseϕ4

a = b[p := true] ∧ a[p] = trueϕ5

a = b[p := true] ∧ a[p] = trueϕ6

a = b ∧ a[p] = falseϕ7

falseϕ8

6th Competition
on Software Testing

(TEST-COMP ’24)
Dirk Beyer

Participants
Table 1: Competition candidates with tool references and representing jury members; new

indicates first-time participants

Tester Jury member Affiliation
cetfuzz new Sumesh Divakaran College of Eng. Trivandrum, India
CoVeriTest Marie-Christine Jakobs LMU Munich, Germany
ESBMC-kind∅ (hors concours) –
FDSE new Zhenbang Chen National U. of Defense Techn., China
Fizzer new Marek Trtík Masaryk U., Brno, Czechia
FuSeBMC Kaled Alshmrany U. of Manchester, UK
FuSeBMC-AI Mohannad Aldughaim U. of Manchester, UK
HybridTiger∅ (hors concours) –
KLEE∅ (hors concours) –
KLEEF new Yurii Kostyukov Huawei, China
Legion∅ (hors concours) –
Legion/SymCC∅ (hors concours) –
Owi new Léo Andrès OCamlPro / LMF, France
PRTest Thomas Lemberger LMU Munich, Germany
Rizzer new Adam Štafa Masaryk U., Brno, Czechia
Symbiotic Martin Jonáš Masaryk U., Brno, Czechia
TracerX Joxan Jaffar National U. of Singapore, Singapore
TracerX-WP new Joxan Jaffar National U. of Singapore, Singapore
UTestGen new Max Barth LMU Munich, Germany
WASP-C∅ (hors concours) –

Features
Table 2: Technologies and features that the test generators
used

Tester B
ou

nd
ed

M
od

el
C

he
ck

in
g

C
E

G
A

R

E
vo

lu
ti

on
ar

y
A

lg
or

it
hm

s

E
xp

lic
it

-V
al

ue
A

na
ly

si
s

F
lo

at
in

g-
P

oi
nt

A
ri

th
m

et
ic

s

G
ui

da
nc

e
by

C
ov

er
ag

e
M

ea
su

re
s

P
re

di
ca

te
A

bs
tr

ac
ti

on

R
an

do
m

E
xe

cu
ti

on

Sy
m

bo
lic

E
xe

cu
ti

on

Ta
rg

et
ed

In
pu

t
G

en
er

at
io

n

A
lg

or
it

hm
Se

le
ct

io
n

P
or

tf
ol

io

cetfuzz new ✓ ✓

CoVeriTest ✓ ✓ ✓ ✓ ✓

ESBMC-kind∅ ✓ ✓ ✓

FDSE new ✓ ✓ ✓ ✓

Fizzer new

FuSeBMC ✓ ✓ ✓ ✓ ✓

FuSeBMC-AI ✓ ✓ ✓ ✓ ✓

HybridTiger∅ ✓ ✓ ✓ ✓

KLEE∅ ✓ ✓ ✓

KLEEF new ✓ ✓ ✓ ✓

Legion∅ ✓ ✓ ✓ ✓ ✓ ✓

Legion/SymCC∅ ✓ ✓ ✓ ✓ ✓ ✓

Owi new ✓ ✓ ✓ ✓

PRTest ✓ ✓

Rizzer new ✓

Symbiotic ✓ ✓ ✓ ✓ ✓

TracerX ✓ ✓ ✓ ✓

TracerX-WP new

UTestGen new ✓ ✓

WASP-C∅ ✓ ✓ ✓

Results
Table 3: Quantitative overview over all results

Tester

C
ov

er
-E

rr
or

11
73

ta
sk

s

C
ov

er
-B

ra
nc

he
s

29
33

ta
sk

s

O
ve

ra
ll

41
06

ta
sk

s

cetfuzz new 226 2197 2258
CoVeriTest 462 4826 4806
ESBMC-kind∅ 195
FDSE new 617 5132 5684
Fizzer new 583 5146 5538
FuSeBMC 930 5478 7295
FuSeBMC-AI 926 5418 7248
HybridTiger∅ 393 3987 4022
KLEE∅ 713 3023 4932
KLEEF new 655 4975 5766
Legion∅ 2896
Legion/SymCC∅ 264 3381 3098
Owi new 256 2241 2420
PRTest 167 2980 2431
Rizzer new 555
Symbiotic 666 3957 5245
TracerX 509 4435 4799
TracerX-WP new 322 1521 2315
UTestGen new 409 4195 4212
WASP-C∅ 532 2838 4009

Final Score
Figure 1: Quantile functions for category Overall.

 0

 2000

 4000

 6000

 8000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

M
in

.
n
u
m

b
e
r

o
f

te
st

 t
a
sk

s

Cumulative score

cetfuzz
CoVeriTest

FDSE
Fizzer

FuSeBMC
FuSeBMC-AI
HybridTiger

KLEE
KLEEF

Legion/SymCC
Owi

PRTest
Symbiotic

TracerX
TracerX-WP

UTestGen
WASP-C

Participation
Top: New participants

2019 2020 2021 2022 2023 20240

5

10

15

20

9

4
2

1 3

8

6
9

11 10
12

Year

Ev
al

ua
te

d
te

st
ge

ne
ra

to
rs

Report

https://test-comp.sosy-
lab.org/2024/

References
Reference
D. Beyer. Automatic testing of C programs: Test-Comp 2024. Springer,
2024

Ranking
Table 4: Overview of the top-three test generators for each
category (measurement values for CPU time and energy
rounded to two significant digits)

Rank Tester Score CPU
Time
(in h)

Cover-Error
1 FuSeBMC 930 76
2 FuSeBMC-AI 926 68
3 Symbiotic 666 5.2
Cover-Branches
1 FuSeBMC 5478 2400
2 FuSeBMC-AI 5418 2300
3 Fizzer new 5146 1700
Overall
1 FuSeBMC 7295 2500
2 FuSeBMC-AI 7248 2400
3 KLEEF new 5766 1700

The content is licensed under CC-BY-4.0, © ETAPS e. V., 2024

