
Alloy
Daniel Jackson

 MIT Lab for Computer Science
ETAPS, April 10, 2002

joint work with:
Ilya Shlyakhter, Manu Sridharan, Sarfraz Khurshid

Brian Lin, Jesse Pavel, Mana Taghdiri,
Mandana Vaziri, Hoeteck Wee

2

non supporte

H: 42.5Hz V:85.4Hz

2

non supporte

H: 42.5Hz V:85.4Hz

didn’t you bring a hardcopy backup?

fool!

3

motivations

3

motivations

‘software model checking’
› system implemented in software?
› infinitely many states?
› handle code directly?

3

motivations

‘software model checking’
› system implemented in software?
› infinitely many states?
› handle code directly?

my focus
› attack essence of software design

-- structures and how they change
› incremental and partial modelling
› automatic, interactive analysis

3

motivations

‘software model checking’
› system implemented in software?
› infinitely many states?
› handle code directly?

my focus
› attack essence of software design

-- structures and how they change
› incremental and partial modelling
› automatic, interactive analysis

attempt to get benefits of
› SMV: automatic analysis
› Z: expression of structure

3

motivations

‘software model checking’
› system implemented in software?
› infinitely many states?
› handle code directly?

my focus
› attack essence of software design

-- structures and how they change
› incremental and partial modelling
› automatic, interactive analysis

attempt to get benefits of
› SMV: automatic analysis
› Z: expression of structure

Pittsburgh, home of SMV

3

motivations

‘software model checking’
› system implemented in software?
› infinitely many states?
› handle code directly?

my focus
› attack essence of software design

-- structures and how they change
› incremental and partial modelling
› automatic, interactive analysis

attempt to get benefits of
› SMV: automatic analysis
› Z: expression of structure

Oxford, home of Z

Pittsburgh, home of SMV

4

the challenge

expressive
intractable

tractable
inexpressive

4

the challenge

language must support
› complex data structures
› declarative specification

partiality, separation of concerns

expressive
intractable

tractable
inexpressive

4

the challenge

language must support
› complex data structures
› declarative specification

partiality, separation of concerns

analysis must be
› fully automatic
› interactive performance
› easy to interpret output

expressive
intractable

tractable
inexpressive

5

key ideas: foundations

5

key ideas: foundations

language is first order logic + relations
› all data structures encoded as relations
› hierarchy with higher-arity relations

5

key ideas: foundations

language is first order logic + relations
› all data structures encoded as relations
› hierarchy with higher-arity relations

analysis is model finding
› make decidable by bounding universe
› ‘small scope hypothesis’

5

key ideas: foundations

language is first order logic + relations
› all data structures encoded as relations
› hierarchy with higher-arity relations

analysis is model finding
› make decidable by bounding universe
› ‘small scope hypothesis’

exploit SAT technology
› analyzer is a compiler
› symmetry breaking, skolemization, sharing, etc
› pluggable backend

6

key ideas: pragmatics

6

key ideas: pragmatics

syntax
› ASCII based
› prefer existing conventions

6

key ideas: pragmatics

syntax
› ASCII based
› prefer existing conventions

semantics
› relations only: no scalars, sets or tuples

a represented as {a}
(a,b) represented as {(a,b)}

› gives simpler syntax
› no complications from partial functions

undefined, null, maybe, non-denoting terms

6

key ideas: pragmatics

syntax
› ASCII based
› prefer existing conventions

semantics
› relations only: no scalars, sets or tuples

a represented as {a}
(a,b) represented as {(a,b)}

› gives simpler syntax
› no complications from partial functions

undefined, null, maybe, non-denoting terms

visualization
› customizable, no built in notion of state, eg.

7

what’s been done?

7

what’s been done?

sample applications
› Chord peer-to-peer lookup (Wee)
› Intentional Naming (Khurshid)
› Key management (Taghdiri)
› Microsoft COM (Sullivan)
› Classic distributed algorithms (Shlyakhter)
› Firewire leader election (Jackson)
› Red-black tree invariants (Vaziri)
› RM-ODP meta modelling (EPFL)
› Role-based access control (BBN)

7

what’s been done?

sample applications
› Chord peer-to-peer lookup (Wee)
› Intentional Naming (Khurshid)
› Key management (Taghdiri)
› Microsoft COM (Sullivan)
› Classic distributed algorithms (Shlyakhter)
› Firewire leader election (Jackson)
› Red-black tree invariants (Vaziri)
› RM-ODP meta modelling (EPFL)
› Role-based access control (BBN)

taught in courses at
› CMU, Waterloo, Wisconsin, Rochester, Kansas State, Irvine,

Georgia Tech, Queen’s, Michigan State, Imperial, Colorado
State, Twente, WPI, MIT

8

outline of rest of talk

8

outline of rest of talk

elevator example
› translating a fragment
› expressing constraints
› trace-based analysis

8

outline of rest of talk

elevator example
› translating a fragment
› expressing constraints
› trace-based analysis

bounding traces
› how long a trace?

8

outline of rest of talk

elevator example
› translating a fragment
› expressing constraints
› trace-based analysis

bounding traces
› how long a trace?

application to code
› analysis, testing

8

outline of rest of talk

elevator example
› translating a fragment
› expressing constraints
› trace-based analysis

bounding traces
› how long a trace?

application to code
› analysis, testing

related work & conclusions

9

example: elevator policy

9

example: elevator policy

challenge
› specify a policy for scheduling elevators

9

example: elevator policy

challenge
› specify a policy for scheduling elevators

tight enough
› all requests eventually served
› don’t skip request from inside lift

9

example: elevator policy

challenge
› specify a policy for scheduling elevators

tight enough
› all requests eventually served
› don’t skip request from inside lift

loose enough
› no fixed configuration of floors, lifts, buttons
› not one algorithm but a family

10

approach: promises

10

approach: promises

deny request
› ‘skipping’: don’t stop at floor
› ‘bouncing’: double back before floor

10

approach: promises

deny request
› ‘skipping’: don’t stop at floor
› ‘bouncing’: double back before floor

policy
› a lift can’t deny a request from inside
› if a lift denies a floor request

some lift promises to take it later

10

approach: promises

deny request
› ‘skipping’: don’t stop at floor
› ‘bouncing’: double back before floor

policy
› a lift can’t deny a request from inside
› if a lift denies a floor request

some lift promises to take it later

freedoms
› divide requests amongst lifts
› postpone decision until first skip or bounce
› unlike ‘closest serves’, can balance load

11

basic abstractions

11

basic abstractions

floor layout
› orderings above and below
› top and bottom floors

11

basic abstractions

floor layout
› orderings above and below
› top and bottom floors

buttons
› inside lift and at floors
› each has an associated floor
› in a given state, some lit

11

basic abstractions

floor layout
› orderings above and below
› top and bottom floors

buttons
› inside lift and at floors
› each has an associated floor
› in a given state, some lit

elevator state
› at or approaching a floor
› rising or falling
› promises to serve some buttons

11

basic abstractions

floor layout
› orderings above and below
› top and bottom floors

buttons
› inside lift and at floors
› each has an associated floor
› in a given state, some lit

elevator state
› at or approaching a floor
› rising or falling
› promises to serve some buttons

11

basic abstractions

floor layout
› orderings above and below
› top and bottom floors

buttons
› inside lift and at floors
› each has an associated floor
› in a given state, some lit

elevator state
› at or approaching a floor
› rising or falling
› promises to serve some buttons

at floor 1,
rising

11

basic abstractions

floor layout
› orderings above and below
› top and bottom floors

buttons
› inside lift and at floors
› each has an associated floor
› in a given state, some lit

elevator state
› at or approaching a floor
› rising or falling
› promises to serve some buttons

approaching
floor 2,
rising

at floor 1,
rising

11

basic abstractions

floor layout
› orderings above and below
› top and bottom floors

buttons
› inside lift and at floors
› each has an associated floor
› in a given state, some lit

elevator state
› at or approaching a floor
› rising or falling
› promises to serve some buttons

at floor 2,
falling

approaching
floor 2,
rising

at floor 1,
rising

12

language elements

12

language elements

relations
sig State {at: Lift ->? Floor}
declares relation at with values like {(s0,p0,f0),(s1,p0,f1)}

12

language elements

relations
sig State {at: Lift ->? Floor}
declares relation at with values like {(s0,p0,f0),(s1,p0,f1)}

operators
+ & - . union, intersection, difference, join
s.at the lift/floor mapping for state s
p.(s.at), s.at[p] the floor of lift p in state s

at = {(s0,p0,f0),(s1,p0,f1)} , s = {(s1)}, p = {(p0)}
s.at = {(p0,f1)}, s.at[p] = {(f1)}

12

language elements

relations
sig State {at: Lift ->? Floor}
declares relation at with values like {(s0,p0,f0),(s1,p0,f1)}

operators
+ & - . union, intersection, difference, join
s.at the lift/floor mapping for state s
p.(s.at), s.at[p] the floor of lift p in state s

at = {(s0,p0,f0),(s1,p0,f1)} , s = {(s1)}, p = {(p0)}
s.at = {(p0,f1)}, s.at[p] = {(f1)}

formulas
in means subset
s.at[p] in f if p is at a floor in state s, that floor is f

13

example

13

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

13

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

13

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

sig State {at, approaching: Lift ->? Floor}
-- at, approaching map each state to a partial function

13

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

sig State {at, approaching: Lift ->? Floor}
-- at, approaching map each state to a partial function

fact {all s: State, p: Lift | one s.(at+approaching)[p]}
-- global constraint: in a state, lift is at or approaching one floor

13

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

sig State {at, approaching: Lift ->? Floor}
-- at, approaching map each state to a partial function

fact {all s: State, p: Lift | one s.(at+approaching)[p]}
-- global constraint: in a state, lift is at or approaching one floor

fun show () {Floor in State.at[Lift]}
-- invocable constraint: each floor has a lift at it in some state

13

example

sig Floor {above, below: option Floor}
-- above, below map each floor to at most one floor

sig Lift {} -- introduces a set, no relations

sig State {at, approaching: Lift ->? Floor}
-- at, approaching map each state to a partial function

fact {all s: State, p: Lift | one s.(at+approaching)[p]}
-- global constraint: in a state, lift is at or approaching one floor

fun show () {Floor in State.at[Lift]}
-- invocable constraint: each floor has a lift at it in some state

run show for 2 -- find instance with 2 states, lifts, floors

14

translation

14

translation

sig Floor {above, below: option Floor}
-- allocate boolean variables Floor[i] , above[i,j] , below[i,j]
-- interpretation: above[i,j] is true if jth floor is above ith floor
-- ranges of i, j etc determined by scope: for 2 floors, i, j 2 0..1

14

translation

sig Floor {above, below: option Floor}
-- allocate boolean variables Floor[i] , above[i,j] , below[i,j]
-- interpretation: above[i,j] is true if jth floor is above ith floor
-- ranges of i, j etc determined by scope: for 2 floors, i, j 2 0..1

sig Lift {} -- allocate Lift[i]

14

translation

sig Floor {above, below: option Floor}
-- allocate boolean variables Floor[i] , above[i,j] , below[i,j]
-- interpretation: above[i,j] is true if jth floor is above ith floor
-- ranges of i, j etc determined by scope: for 2 floors, i, j 2 0..1

sig Lift {} -- allocate Lift[i]

sig State {at, approaching: Lift ->? Floor}
-- allocate at[i,j,k] , approaching[i,j,k]

14

translation

sig Floor {above, below: option Floor}
-- allocate boolean variables Floor[i] , above[i,j] , below[i,j]
-- interpretation: above[i,j] is true if jth floor is above ith floor
-- ranges of i, j etc determined by scope: for 2 floors, i, j 2 0..1

sig Lift {} -- allocate Lift[i]

sig State {at, approaching: Lift ->? Floor}
-- allocate at[i,j,k] , approaching[i,j,k]

fact {all s: State, p: Lift | one s.(at+approaching)[p]}
fun show () {Floor in State.at[Lift]}
-- create formula 8k . Floor[k])9i,j . at[i,j,k]^State[i]^Lift[j]

14

translation

sig Floor {above, below: option Floor}
-- allocate boolean variables Floor[i] , above[i,j] , below[i,j]
-- interpretation: above[i,j] is true if jth floor is above ith floor
-- ranges of i, j etc determined by scope: for 2 floors, i, j 2 0..1

sig Lift {} -- allocate Lift[i]

sig State {at, approaching: Lift ->? Floor}
-- allocate at[i,j,k] , approaching[i,j,k]

fact {all s: State, p: Lift | one s.(at+approaching)[p]}
fun show () {Floor in State.at[Lift]}
-- create formula 8k . Floor[k])9i,j . at[i,j,k]^State[i]^Lift[j]

run show for 2 -- solve formula

15

an instance generated by the analyzer

15

an instance generated by the analyzer

15

an instance generated by the analyzer

select projection for type

16

projection onto Lift

17

projection onto State

18

process

18

process
user

writes
model
and

selects
command

18

process
user

writes
model
and

selects
command

Alloy Analyzer
translates command
to boolean formula

18

process
user

writes
model
and

selects
command

Alloy Analyzer
translates command
to boolean formula SAT solver

finds boolean
solution

18

process
user

writes
model
and

selects
command

Alloy Analyzer
translates command
to boolean formula SAT solver

finds boolean
solution

Alloy Analyzer
translates boolean

solution to relational

18

process
user

writes
model
and

selects
command

Alloy Analyzer
translates command
to boolean formula SAT solver

finds boolean
solution

Alloy Analyzer
translates boolean

solution to relational

Alloy Analyzer
creates custom

visualization

19

constraints

19

constraints

lift physics & hardware
› can’t be at and approaching a floor
› can’t jump from floor to floor
› can’t change direction between floors

19

constraints

lift physics & hardware
› can’t be at and approaching a floor
› can’t jump from floor to floor
› can’t change direction between floors

policy
› can’t skip a request from inside the lift
› buttons reset when requests serviced

19

constraints

lift physics & hardware
› can’t be at and approaching a floor
› can’t jump from floor to floor
› can’t change direction between floors

policy
› can’t skip a request from inside the lift
› buttons reset when requests serviced

analyses
› generate samples of states, steps, traces
› show policy implies desired properties (eg, no starvation)

20

static environmental constraints

20

static environmental constraints

sig Bottom extends Floor {}

20

static environmental constraints

sig Bottom extends Floor {}

sig State {
part rising, falling: set Lift
at, approaching: Lift ->? Floor
}

20

static environmental constraints

sig Bottom extends Floor {}

sig State {
part rising, falling: set Lift
at, approaching: Lift ->? Floor
}

fun LiftPosition (s: State) {
all p: Lift {

-- lift is not at and approaching same floor
no s.at[p] & s.approaching[p]
-- can't be approaching the bottom floor when rising
p in s.rising => s.approaching[p] != Bottom
…}

}

20

static environmental constraints

sig Bottom extends Floor {}

sig State {
part rising, falling: set Lift
at, approaching: Lift ->? Floor
}

fun LiftPosition (s: State) {
all p: Lift {

-- lift is not at and approaching same floor
no s.at[p] & s.approaching[p]
-- can't be approaching the bottom floor when rising
p in s.rising => s.approaching[p] != Bottom
…}

}

function: an ‘invocable’ constraint

21

dynamic environmental constraints

21

dynamic environmental constraints

fun LiftMotion (s, s': State) {
all p: Lift {

-- if at a floor after, was at or approaching that floor before
s'.at[p] in s.(at + approaching)[p]
…}

}

21

dynamic environmental constraints

fun LiftMotion (s, s': State) {
all p: Lift {

-- if at a floor after, was at or approaching that floor before
s'.at[p] in s.(at + approaching)[p]
…}

}

terse relational operators
s'.at[p] in s.(at + approaching)[p]
all f: Floor | f = s’.at[p] => f = s.at[p] or f = s.approaching[p]

21

dynamic environmental constraints

fun LiftMotion (s, s': State) {
all p: Lift {

-- if at a floor after, was at or approaching that floor before
s'.at[p] in s.(at + approaching)[p]
…}

}

terse relational operators
s'.at[p] in s.(at + approaching)[p]
all f: Floor | f = s’.at[p] => f = s.at[p] or f = s.approaching[p]

s pre, s’ post:
just a convention

22

policy: defining denial

22

policy: defining denial

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below
}

22

policy: defining denial

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below
}

fun Towards (s: State, p: Lift, f: Floor) {
-- p is going towards serving floor f
let next = nextFloor(s,p) |

f in s.at[p].^next + s.approaching[p].*next
}

22

policy: defining denial

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below
}

fun Towards (s: State, p: Lift, f: Floor) {
-- p is going towards serving floor f
let next = nextFloor(s,p) |

f in s.at[p].^next + s.approaching[p].*next
}

fun Denies (s, s': State, p: Lift, b: Button) {
-- p was going to serve b, but is no longer
let f = b.floor |

Towards (s,p,f) and not Towards (s',p,f) and !Serves (s,s',p,b)
}

22

policy: defining denial

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below
}

fun Towards (s: State, p: Lift, f: Floor) {
-- p is going towards serving floor f
let next = nextFloor(s,p) |

f in s.at[p].^next + s.approaching[p].*next
}

fun Denies (s, s': State, p: Lift, b: Button) {
-- p was going to serve b, but is no longer
let f = b.floor |

Towards (s,p,f) and not Towards (s',p,f) and !Serves (s,s',p,b)
}

transitive closure

23

policy

23

policy

sig State {
lit: set Button,
promises: Lift -> Button, …
}

23

policy

sig State {
lit: set Button,
promises: Lift -> Button, …
}

fun Policy (s, s': State) {
-- a lift can't deny a promise or a request from inside the lift
no p: Lift, b: s.promises[p] + p.buttons & s.lit | Denies (s,s',p,b)
-- if a lift denies a request some lift serves it or promises to
all b: s.lit & FloorButton - s.promises[Lift], p: Lift |

Denies (s,s',p,b) =>
(some q: Lift | Serves(s,s',q,b)) or b in s'.promises[Lift]

…}

23

policy

sig State {
lit: set Button,
promises: Lift -> Button, …
}

fun Policy (s, s': State) {
-- a lift can't deny a promise or a request from inside the lift
no p: Lift, b: s.promises[p] + p.buttons & s.lit | Denies (s,s',p,b)
-- if a lift denies a request some lift serves it or promises to
all b: s.lit & FloorButton - s.promises[Lift], p: Lift |

Denies (s,s',p,b) =>
(some q: Lift | Serves(s,s',q,b)) or b in s'.promises[Lift]

…}

non-deterministic

24

putting things together

24

putting things together

fun Trans (s, s': State) {
-- the before and after positions and the motion are legal
LiftPosition (s) and LiftPosition (s') and LiftMotion (s,s')
-- the policy is satisfied
Policy (s,s’)
-- the buttons are reset appropriately
some press: set Button | ButtonUpdate (s,s',press)
}

25

animating denial

25

animating denial

fun ShowPolicy (s, s': State) {
Trans (s, s')
some b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b)
no s.promises & some s’.promises
}

run ShowPolicy for 2 but 3 Floor

26

sample denial

26

sample denial

26

sample denial
the denying lift

26

sample denial
the denying lift
the denied button

26

sample denial
the denying lift
the denied button

26

sample denial
the denying lift
the denied button

another lift promises

27

traces: checking starvation

27

traces: checking starvation

fun Trace () {
-- a state is related to its successor by the transition relation
all s: State - Ord[State].last |

let s' = Ord[State].next[s] | Trans (s,s')
}

27

traces: checking starvation

fun Trace () {
-- a state is related to its successor by the transition relation
all s: State - Ord[State].last |

let s' = Ord[State].next[s] | Trans (s,s')
}

assert EventuallyServed {
-- if the states form a trace
Trace () =>
-- then a button lit in the start state is eventually reset

all b: (Ord[State].first).lit | some s': State | b !in s'.lit
}

27

traces: checking starvation

fun Trace () {
-- a state is related to its successor by the transition relation
all s: State - Ord[State].last |

let s' = Ord[State].next[s] | Trans (s,s')
}

assert EventuallyServed {
-- if the states form a trace
Trace () =>
-- then a button lit in the start state is eventually reset

all b: (Ord[State].first).lit | some s': State | b !in s'.lit
}

check EventuallyServed for 3 Lift, 3 Button, 3 Floor, 8 State

28

counterexample!

28

counterexample!

28

counterexample!

assert EventuallyServed {
Trace () and some Lift =>

all b: (Ord[State].first).lit | some s': State | b !in s'.lit
}

29

another…

29

b

another…

29

b

Lift_1 promisesanother…

29

b

Lift_1 promises Lift_1 turnsanother…

29

b

Lift_1 promises Lift_1 turns

promise passes from Lift_1 to Lift_0 !

another…

29

b

Lift_1 promises Lift_1 turns

promise passes from Lift_1 to Lift_0 ! Lift_0 drops
promise

another…

30

what you’ve seen

30

what you’ve seen

simple logic, complex system
› relations for all structuring

buttons to lifts, components to states, states to successors
› declarative style

separation of concerns by conjunction
› relational operators

succinct, idioms easy to grasp
students did lift problem as homework after 3 lectures

30

what you’ve seen

simple logic, complex system
› relations for all structuring

buttons to lifts, components to states, states to successors
› declarative style

separation of concerns by conjunction
› relational operators

succinct, idioms easy to grasp
students did lift problem as homework after 3 lectures

one analysis -- model finding
› for simulation and consequence checking
› (for checking refactoring)

31

when is a trace long enough?

31

when is a trace long enough?

for safety properties, check all traces
› but how long? ie, what is scope of State?

31

when is a trace long enough?

for safety properties, check all traces
› but how long? ie, what is scope of State?

idea: bound the diameter
› if all states reached in path ≤ k
› enough to consider only traces ≤ k

31

when is a trace long enough?

for safety properties, check all traces
› but how long? ie, what is scope of State?

idea: bound the diameter
› if all states reached in path ≤ k
› enough to consider only traces ≤ k

strategy
› ask for loopless trace of length k+1

if none, then k is a bound
› tighter bounds possible: eg, no shortcuts

31

when is a trace long enough?

for safety properties, check all traces
› but how long? ie, what is scope of State?

idea: bound the diameter
› if all states reached in path ≤ k
› enough to consider only traces ≤ k

strategy
› ask for loopless trace of length k+1

if none, then k is a bound
› tighter bounds possible: eg, no shortcuts

like bounded model checking
› but can express conditions directly

31

when is a trace long enough?

for safety properties, check all traces
› but how long? ie, what is scope of State?

idea: bound the diameter
› if all states reached in path ≤ k
› enough to consider only traces ≤ k

strategy
› ask for loopless trace of length k+1

if none, then k is a bound
› tighter bounds possible: eg, no shortcuts

like bounded model checking
› but can express conditions directly

diameter = 1
max loopless = 1

31

when is a trace long enough?

for safety properties, check all traces
› but how long? ie, what is scope of State?

idea: bound the diameter
› if all states reached in path ≤ k
› enough to consider only traces ≤ k

strategy
› ask for loopless trace of length k+1

if none, then k is a bound
› tighter bounds possible: eg, no shortcuts

like bounded model checking
› but can express conditions directly

diameter = 1
max loopless = 1

diameter = 1
max loopless = 5

32

applications to code

32

applications to code

Alloy Annotation Language
› mutation, nulls, dynamic dispatch

32

applications to code

Alloy Annotation Language
› mutation, nulls, dynamic dispatch

test suite generation
› ask analyzer for instances of rep invariant
› can test one operation of an abstract type
› symmetry breaking gives good coverage

32

applications to code

Alloy Annotation Language
› mutation, nulls, dynamic dispatch

test suite generation
› ask analyzer for instances of rep invariant
› can test one operation of an abstract type
› symmetry breaking gives good coverage

code analysis
› translate body of method into Alloy constraint
› assert that body implies specification
› analyzer gives counterexamples heap traces

32

applications to code

Alloy Annotation Language
› mutation, nulls, dynamic dispatch

test suite generation
› ask analyzer for instances of rep invariant
› can test one operation of an abstract type
› symmetry breaking gives good coverage

code analysis
› translate body of method into Alloy constraint
› assert that body implies specification
› analyzer gives counterexamples heap traces

example: red-black trees
all x,y: Leaf | #(x.~*children & Black) = #(y.~*children & Black)

33

related work: UML

33

related work: UML

Object Constraint Language (IBM)
› not fully declarative
› pre/post built-in
› Smalltalk-like syntax for quantifiers

33

related work: UML

Object Constraint Language (IBM)
› not fully declarative
› pre/post built-in
› Smalltalk-like syntax for quantifiers

not designed for analysis
› ‘tool just like Alloy’s, but with Joe User in place of Chaff’

33

related work: UML

Object Constraint Language (IBM)
› not fully declarative
› pre/post built-in
› Smalltalk-like syntax for quantifiers

not designed for analysis
› ‘tool just like Alloy’s, but with Joe User in place of Chaff’

many researchers working on fixing it
› better to start again with something simpler?
› must we really discard traditional logic?
› is this really what industry needs?

33

related work: UML

Object Constraint Language (IBM)
› not fully declarative
› pre/post built-in
› Smalltalk-like syntax for quantifiers

not designed for analysis
› ‘tool just like Alloy’s, but with Joe User in place of Chaff’

many researchers working on fixing it
› better to start again with something simpler?
› must we really discard traditional logic?
› is this really what industry needs?

see UML metamodel in Alloy on sdg.lcs.mit.edu/alloy

34

related work: model checking

34

related work: model checking

only low-level datatypes
› must encode in records, arrays
› no transitive closure, etc

34

related work: model checking

only low-level datatypes
› must encode in records, arrays
› no transitive closure, etc

built-in communications
› not suited for abstract schemes
› fixed topology of processes

34

related work: model checking

only low-level datatypes
› must encode in records, arrays
› no transitive closure, etc

built-in communications
› not suited for abstract schemes
› fixed topology of processes

culture of model checking
› emphasizes finding showstopper flaws
› but in software, essence is incremental modelling
› keep counters, discard model or vice versa?

34

related work: model checking

only low-level datatypes
› must encode in records, arrays
› no transitive closure, etc

built-in communications
› not suited for abstract schemes
› fixed topology of processes

culture of model checking
› emphasizes finding showstopper flaws
› but in software, essence is incremental modelling
› keep counters, discard model or vice versa?

35

related work: static analysis

35

related work: static analysis

type analyses
› scalable, compositional, economical
› can’t express complex structural properties

35

related work: static analysis

type analyses
› scalable, compositional, economical
› can’t express complex structural properties

proof-based techniques (eg, PCC)
› complete: good when adversary seeds bugs (but ESC)
› can’t check structural properties without lemmas

35

related work: static analysis

type analyses
› scalable, compositional, economical
› can’t express complex structural properties

proof-based techniques (eg, PCC)
› complete: good when adversary seeds bugs (but ESC)
› can’t check structural properties without lemmas

shape analyses (eg, PEGs, TVLA)
› automatic and complete for whole program
› but for modular analysis, not complete

eg, assume arguments to procedure aren’t aliased

36

conclusion

36

conclusion

summary
› executability h loss of abstraction
› analysis is more than verification
› first-order logic can be tractable

36

conclusion

summary
› executability h loss of abstraction
› analysis is more than verification
› first-order logic can be tractable

current challenges
› documenting idioms
› tool performance

from 30 bits (1995) to 1000 bits (2002)
› design conformance

36

conclusion

summary
› executability h loss of abstraction
› analysis is more than verification
› first-order logic can be tractable

current challenges
› documenting idioms
› tool performance

from 30 bits (1995) to 1000 bits (2002)
› design conformance

http://sdg.lcs.mit.edu/alloy
› tool downloads
› papers

