
Proposal for a tutorial at ETAPS’99

Verification of Parametric Systems
or

Monadic 2nd Order Logic in Practice

Tiziana Margaria

Universität Dortmund, Germany
{tiziana@sunshine.cs.uni-dortmund.de}

Scope

In this tutorial we intend to present M2L(Str) as an adequate logic for modelling
different classes of parametric systems, discuss how a verification environment
for this kind of systems can be designed and realized, and show the fielded use
of both the logic and its tools for the specification, verification, and synthesis
of relevant classes of parametric systems. The detailed discussion of specific
application profiles, some of which apparently out of the scope of the proposed
methodology, will illustrate the remarkable modeling power of M2L(Str). This
power, which marks it as a good candidate formalism for hardware/software
codesign, combined with its fully automatic verification feature, indicate its high
potential to enter industrial practice.

Detailed Organization of the Tutorial

The planned organization follows closely the outline of the content (see p. 3),
and will be structured as follows:

1. Motivation (with examples from different application domains)
2. Basics of M2L: Syntax and Semantics, relation with automata, concept of

‘regularity’, decision procedure
3. Design of a family of M2L-based programming languages.
4. Example of domain-specific modelling: parametric systems.

(a) Control structures (time-parameter)
(b) Datapaths (structure-parameter)
(c) Parametric sequential circuits (e.g. microprocessors): dealing at once

with both control structures and parametric datapaths
(when is it possible, which classes of systems, conditions)

(d) Extending ‘regularity’
i. in the time dimension: modelling skewing (e.g. systolic systems)
ii. in the structural dimension: capturing ‘growing’ interfaces

5. Complexity analysis: responsibilities for exponential blowups.
6. Design of an environment for M2L-based analysis and verification
7. Evaluation and Perspectives



Key learning objective

Analysis and discussion of a full design cycle: from a theory to its fielded appli-
cation.

Relevance

Focussing on the theory-practice gap, its bridges and its opportunities, the tuto-
rial directly addresses the main objective of ETAPS. The tutorial spans theory,
practice and concrete application, and is therefore of potential interest to any
ETAPS participant.

History

The presentation has been given before by the proposer in a variety of lengths
(1-hour seminar, 6-hours short course, and in full detail during two 1-semester
classes given 1996/97 at the University of Passau). The tutorial will be based on
the short course material.

Duration

Default half day, possible also full day (in this case with online demo support).

Scheduling

Possibly non-overlapping with the CPN tutorial.

Audience

Target: Any ETAPS participant

Prerequisites: Basic Computer Science knowledge

Credentials of the instructor

10 years experience in the automatic verification of software and hardware sys-
tems. Leader of various projects in the area.

2



Outline of the Planned Content

Motivation

Generalization and reuse are two concepts underlying component-based system
design. In particular, families of components, often given in terms of specific
patterns, like n-arbiter, n-process scheduler, n-bit adder, systolic arrays of length
n, etc., gain importance in modern system design. The corresponding parametric
designs are intended to uniformly cover all instances of an unbounded, but finite
parameter domain.

Monadic second-order logic on strings (M2L(Str)) provides a particularly
attractive theory for parametric designs. It also conveniently combines two im-
portant features in a single formalism: it is an abstract specification language
and an effective programming language. In fact, as a second-order predicate logic
it admits high-level behavioral design capture in which one focusses on what is
to be achieved rather than how this is done. Yet, in contrast to full higher-order
logic, this expressiveness is not compromised by a loss of effectiveness. Every
specification can be translated into an equivalent finite-state automaton, and
thus is decidable and executable. In fact, it admits fully automatic verification
of parametric designs, which typically seem to require proofs by induction.

Proposed more than 30 years ago by Alonzo Church as an appropriate de-
cidable specification formalism for reasoning about sequences of bitvectors [3],
it had been “forgotten” for its staggering non-elementary worst case complexity
behaviour: in the worst-case the computational effort is a stack of exponentials
of height proportional to the size of the formula. However, recent application
to the analysis and verification of hardware systems has shown that relevant
practical problems are usually far better behaved than the staggering worst-case
complexity, and can be solved automatically in reasonable time. In fact, several
implementations of the decision procedure already exist [7, 6], and in our expe-
rience a careful design reflecting an effort for efficiency can considerably help
keeping manageable runtimes.

The tutorial will investigate M2L(Str) and its inherent structural restrictions
(eg., only one parameter can be considered at a time) from the application point
of view: considering a variety of case studies of increasing conceptual complexity
it will illustrate that the range of M2L(Str)-based verification goes far beyond
apparent hurdles, and that it well has the potential to enter industrial practice.

Most of the considered case studies concern parametric hardware compo-
nents, because their classical transparent structural decomposition in time, space,
and data aspects is ideal to illustrate the power of adequate modelling in M2L(Str).
However, the same principles can also be applied e.g. to parametric components
for distributed systems [6]. In fact, M2L(Str) can be regarded as a uniform de-
scription language for model-based analysis of software [11] as well as hardware
systems [1, 10, 8, 12] and is therefore a good candidate formalism for model-based
hardware/software codesign.

3



Minimal Logic

Kernel Logic
User Logic

Hardware
Application 

Logic

Application LayerUser LayerTool Layer

. . .

. . .

Encoding Encoding

Definition

Fig. 1. Layered Logics in Mosel

This wide range of application imposes strong demands on the tool level:
different application domains come with different high-level modelling languages,
have different standard patterns and require different feedback (error diagnosis).
An adequate tool should take these demands into account. The tutorial will also
address this aspect by sketching the Mosel toolset, which arose directly under
the pressure of these demands. In fact, the interplay between the investigation
of varying application profiles and the design of the Mosel toolset illustrates
the potential of synergy between the hardware and the software community.
Some of the design decision taken may appear minor at first sight, but they are,
according to our experience, vital for successful technology transfer.

In the following we will first sketch the design decisions underlying the Mosel

toolset, and subsequently discuss and classify a variety of case studies in order
to explore the range of the proposed fully automatic verification support.

The Mosel Toolset: Design Decisions

Mosel [7] is an environment for the analysis and verification in monadic second-
order logic. Analysis and verification are based on model construction. Its aim is
to offer a system-level open environment supporting several theories of the logic
by means of a flexible set of decision procedures complemented by a variety of
support components which provide input format translations, visualization, and
interfaces to other logics and other analysis, verification, and synthesis tools.

The accent of the tutorial is the investigation of the conceptual application
profile of M2L(Str)-based verification. Optimizations of the underlying individ-
ual decision procedures are only addressed at the side.

Modular design of a hierarchy of logics
It provides both soundness of the logics and comfort to different groups of users
who ‘program’ in those logics. A hierarchy of logic layers, with increasingly pow-
erful constructs, related by either direct embedding or more elaborate encodings
as shown in Fig. 1, covers the following spectrum(see [7] for details):

4



– a reference language containing the minimal set of primitives for which the
semantics is formally defined (the minimal logic),

– an extended language (the kernel logic) coinciding with the set of constructs
actually implemented as primitives in the semantic decision procedure, whose
design was tailored for the efficiency of the computations,

– an application-independent layer of general-purpose user logics, tailored for
the user’s comfort. They may be rather different from the kernel logic and
need a compilation into the kernel logic [5],

– a domain-specific layer of application logics, each capturing via additional
predicates and constructs the ‘look and feel’ of specific application domains.
Here we briefly examine the domain of verification and synthesis of hardware,
where we deal with families of parametric sequential circuits [8].

Modular tool design
Following a component-based design style [13], Mosel is realized as a collection
of modules which can be combined or exchanged at need. This way, it supports
flexible adaptation and extension to new input or output formalisms, as well as
the interchange of some of its internal components (e.g., users may exchange the
BDD [2] package used in the decision procedure, or the automata minimization
and determinization algorithms).

The aim is that, like in ETI [15], the best-fitting incarnations of tools may
be put together at need, on an application-driven basis, from the collection of
existing components, without need of programming. An example of the synergies
arising from the flexibility of the free combination of tool functionalities is the
use of formal methods as a means to personalize the presentation layer of an
environment [9], in order to grant a domain and user-specific visualization of
models and results.

The corresponding concrete implementation will be discussed at an abstract and
methodological level, concentrating on

– the design decisions taken in the realization of the three groups of compo-
nents (decision procedures, translators between different logics, and graphical
visualization modules),

– their consequences and tradeoffs wrt. efficiency and flexibility, and
– their interplay.

Important are issues like syntax-independence of internal representations, orga-
nization of the object-oriented implementation of the decision procedures, choice
of data structures for the representation of automata (e.g. implicit vs. explicit,
role and kind of BDDs), organization of the embedding and of the translations
between the different logics, definition of component’s interfaces and interfacing
components.

5



Case Study-Driven Exploration of the Application Profile

In this tutorial we focus on the specification and verification of reactive systems.
The M2L(Str) application-level logic allows us to capture in a common frame-
work a wide spectrum of abstraction levels, ranging from generic architecture or
protocol levels [11] to hardware-oriented register transfer and gate levels [10, 8].
In particular, both behavioural and structural description styles are supported,
and from both it is possible to carry out model-based analysis, verification, and
error detection. Moreover, register-transfer and gate level circuits can be auto-
matically obtained from the models with current hardware synthesis techniques.
Discussing concrete case studies, we will show:

– how to model behavioral descriptions in M2L(Str), using different formula-
tions of the behavior

– how to validate the specifications, by verifying properties of these behavioral
descriptions like e.g., consistency, equivalence, or determinism

– how to use a model-based decision procedure for this logic to construct the
minimal model, by computing its operational semantics in form of a finite-
state automaton.

The expressive power of M2L(Str) captures only one-dimensional structures (lin-
early or circularly arranged). This is due to the interpretation of the logic over
strings, which implies that the parameterization allowed to express generalized
behaviours is limited to the generic “length” of strings. Since strings may be
taken to assume different meanings (in [10, 11] sampled waveforms for control
circuits, in [8] the bitwidth of a datapath), a degree of freedom in the use of the
logic is still left to the application designer, e.g.,

– Parametrization over time allows the description of the sequential behavior
of a single processor in the form of difference equations (typical in control-
oriented modelling).

– Parametrization over structure is particularly suited for VLSI implementa-
tions where the same basic cell is often instanced many times to yield a
regular structure (typical in datapath-oriented modelling).

The tutorial will also develop some more elaborate parameterization schemes,
which allow us to capture problems, which seem to be out of the range of the
one-dimensional modelling.

Structure of the Application Domain
We initially generalised the circuit libraries of the IFIP 10.2 benchmark set to
comprise

– a full library of parametric gates
(n-buf, n-inv, n-and, n-or, n-xor, n-nand, n-nor, n-xnor)

– state-holding devices (several descriptions of D-flipflop)
– a full library of parametric RT-level components

(including n-mux, n-reg, n-shiftreg, n-comp, n-adder, n-ALU,...)

The corresponding implementations are based on commercial TTL components [4].

6



Example System Type Proof Style
Hardware

D-ff (timing) comb. prop/gate c t f –
parametric ALU comb. beh/gate d s h homog.
controllers seq. beh/gate c t f –
synchr. counters seq. beh/RT/gate c+d (t)+s h homog.
linear systolic array seq. gate/gate c+d t+s h heter.
MINMAX (microproc.) seq. beh/RT c+d (t)+s h homog.

Software - distributed systems
load balance controller HW/SW multiparadigm

Table 1. Classification of systems and proofs

A classification of the typologies of parametric systems dealt with so far is re-
ported in Tab. 1. Here we summarize for a few sample case studies which will
be discussed in the tutorial

– the nature of the system under consideration,
• combinational (i.e. stateless) and sequential (with state) systems
• their nature as controllers, datapaths (e.g. adder), or both
• the abstraction level of their specification and implementation (e.g gate,

register-transfer)
– a compact characterization of the modelling in M2L, like the nature of the

interpretation of the parameter (time or structure), and
– a compact characterization of the proof technique (proof style)
• flat or hierarchical,
• homogeneous or heterogeneous, i.e. whether different steps of a hierar-

chical proof concern parameters of the same nature (e.g. all time pa-
rameters) or not (reasoning on structure at one level and on time on
another)

This discussion should provide sufficient intuition in order for the audience to
feel the power the proposed methodology. E.g., being able to capture sequential
iterative systems of any kind (uni-, bidirectional or circular), as needed for the
counters and the systolic array, exceeds the range of the classical induction-based
approaches.

The fully automatic treatment of relevant classes of parametric circuits offered
by the M2L(Str) logic is a central feature for the practicability of the method
in an industrial environment: only push-button techniques are in fact widely
acceptable by system designers. Moreover, user interaction must be possible
completely within the application level. We therefore envisage a hierarchy of
application level formalisms the syntax of which may coincide with decidable
subsets of several widespread high-level specification formalisms.

7



References

1. D. Basin, N. Klarlund: Hardware verification using monadic second-order logic,
Proc. CAV ’95, Liège (B), July 1995, LNCS N. 939, Springer Verlag, pp. 31-41.

2. R.E. Bryant: “Graph-based algorithms for boolean function manipulation,” IEEE
Trans. Computing, vol. C-35(8), August 1986, pp. 677-691.

3. A. Church: “Logic, arithmetic and automata,” Proc. Int. Congr. Math., Almqvist
and Wiksells, Uppsala 1963, pp. 23-35.

4. Databook of Analog and Synchronous Components, Fairchild - 1993.
5. C. Gsottberger: The Application Layer of the Mosel Toolkit, Master Thesis,

Fakultät für Mathematik und Informatik, Universität Passau (D), Dec. 1997.
6. J. Henriksen, J. Jensen, M. Jørgensen N. Klarlund, R. Paige, T. Rauhe, A. Sand-

holm: “Mona: Monadic second-order logic in practice,” Proc. of TACAS’95, Århus
(DK), May 1995, LNCS 1019, Springer Verlag, pp. 89-110.

7. P. Kelb, T. Margaria, M. Mendler, C. Gsottberger: “Mosel: A Flexible Toolset
for Monadic Second-Order Logic,” TACAS’97, Enschede (NL), April 1997, LNCS,
Springer Verlag, to appear.

8. T. Margaria: Fully Automatic Verification and Error Detection for Parameterized
Iterative Sequential Circuits, Proc. TACAS’96, Passau (D), March 1996, LNCS 1055,
Springer Verlag, pp. 258-277.

9. T. Margaria, V. Braun: Formal Methods and Customized Visualization: A Fruitful
Symbiosis, Proc. VISUAL’98, Int. Worksh. on Visual Issues for Formal Methods,
satellite to ETAPS’98, März 1998, Lissabon (P), in “Services and Visualization:
Towards User-Friendly Design’, LNCS 1385, Springer Verlag, pp.190-207.

10. T. Margaria, M. Mendler: Automatic treatment of sequential circuits in second-
order monadic logic, 4th GI/ITG/GME Worksh. on Methoden des Entwurfs und
der Verifikation digitaler Systeme, Kreischa (D), March 1996, pp. 21-30, Shaker
Verlag.

11. T. Margaria, M. Mendler: Model-based automatic synthesis and analysis in second-
order monadic logic, R. Cleaveland and D. Jackson, eds., Proc. 1st ACM SIGPLAN
Workshop on Automated Analysis of Software, Paris, January, 1997, pp.99–112.

12. T. Margaria, M. Mendler, C. Gsottberger: Modelling and Verification of Unbounded
Length Systolic Arrays in Monadic Second Order Logic, Infinity’98 - Int. Workshop
on Infinite State Systems, Aalborg (DK), 18 Juli 1998. (Proc. available as Techn.
Rep. TU München, Juli 1998.)

13. T. Margaria, B. Steffen: Coarse-grain Component Based Software Development:
The MetaFrame Approach, Proc. STJA’97, Smalltalk und Java in Industrie und
Ausbildung, 10.-11. September 1997, Erfurt (D), ISBN 3-00-001828-X, pp.29-34.

14. T. Margaria, B. Steffen: Backtracking-free Design Planning by Automatic Synthesis
in METAFrame Proc. FASE’98, Int. Conf. on Fundamental Aspects of Software
Engineering, Lissabon, Apr. 1998, LNCS 1382, pp.188-204, Springer Verlag.

15. B. Steffen, T. Margaria, V. Braun: The Electronic Tool Integration Plat-
form: Concepts and Design, STTT, Int. Journal on Software Tools for Tech-
nology Transfer, Vol.1 (1/2), 1997, Springer Verlag, pp. 9-30. See also
http://eti.cs.uni-dortmund.de.

8


